MiniMax M2 API

minimax/minimax-m2

MiniMax-M2 是一款紧凑高效的大型语言模型,专为端到端编程与智能体工作流优化而设计。模型拥有 100 亿激活参数(总参数量 2300 亿),在通用推理、工具使用及多步骤任务执行方面展现出接近前沿水平的智能,同时保持低延迟与高部署效率。 根据 Artificial Analysis 的基准测试显示,MiniMax-M2在数学、科学及指令遵循等综合智能维度位列顶级开源模型。其小型激活参数量确保了快速推理、高并发支持与更优的单位经济效益,特别适合大规模智能体、开发者助手及需要高响应度与成本效益的推理驱动型应用。 为保证模型性能,MiniMax 强烈建议在对话轮次间保持推理连续性。

模型 ID
minimax/minimax-m2
更新日期
模型能力
文本生成、深度思考
上下文长度
128 K
模型价格(每 1000 tokens 输入)
¥ 0.003
模型价格(每 1000 tokens 输出)
¥ 0.012
模型系列
MiniMax

MiniMax M2 模型介绍:

MiniMax-M2 是一个为极致编码与 Agentic 工作流打造的 Mini 模型。

MiniMax-M2 重新定义了代理的效率。它是一个紧凑、快速且成本效益高的 MoE(专家混合)模型(总参数量 230 billion,激活参数 10 billion),专为在编码与代理任务上实现卓越表现而构建,同时保持强大的通用智能。仅使用 10 billion 个激活参数,MiniMax-M2 即能提供当今顶级模型在端到端工具使用上的复杂能力,但以更精简的形式降低了部署与扩展难度。


模型亮点

  • 卓越的智能能力。 根据 Artificial Analysis 的基准测试,MiniMax-M2 在数学、科学、指令遵循、编码与代理工具使用等方面展示了极具竞争力的通用智能。其综合得分在全球开源模型中排名第一。

  • 高级编码能力。 为端到端开发者工作流而设计,MiniMax-M2 在多文件编辑、编码-运行-修复循环以及通过测试验证的修复方面表现出色。在 Terminal-Bench 与(Multi-)SWE-Bench 风格任务上的强劲表现证明了其在终端、IDE 与 CI 环境中跨多语言的实用性。

  • Agentic 性能。 MiniMax-M2 能规划并执行复杂的、长时程的工具链,涵盖 shell、浏览器、检索与代码执行器。在 BrowseComp 风格的评估中,它能持续定位难以发现的来源,保持可追溯的证据,并能从不稳定的步骤中优雅恢复。

  • 高效设计。 凭借 10 billion 个激活参数(总参数 230 billion),MiniMax-M2 在交互式代理与批量采样上实现了更低的延迟、更低的成本和更高的吞吐量——完美契合向更易部署但仍在编码与代理任务上表现出色的模型转变。


编码与智能体基准测试

这套综合评估体系针对真实场景的端到端编码与智能体工具使用能力进行检验:包括编辑真实代码库、执行命令行操作、浏览网页以及交付可用解决方案。其测试表现与开发者在终端、集成开发环境和持续集成系统中的日常开发体验高度相关。

Benchmark MiniMax-M2 Claude Sonnet 4 Claude Sonnet 4.5 Gemini 2.5 Pro GPT-5 (thinking) GLM-4.6 Kimi K2 0905 DeepSeek-V3.2
SWE-bench Verified 69.4 72.7 * 77.2 * 63.8 * 74.9 * 68 * 69.2 * 67.8 *
Multi-SWE-Bench 36.2 35.7 * 44.3 / / 30 33.5 30.6
SWE-bench Multilingual 56.5 56.9 * 68 / / 53.8 55.9 * 57.9 *
Terminal-Bench 46.3 36.4 * 50 * 25.3 * 43.8 * 40.5 * 44.5 * 37.7 *
ArtifactsBench 66.8 57.3* 61.5 57.7* 73* 59.8 54.2 55.8
BrowseComp 44 12.2 19.6 9.9 54.9* 45.1* 14.1 40.1*
BrowseComp-zh 48.5 29.1 40.8 32.2 65 49.5 28.8 47.9*
GAIA (text only) 75.7 68.3 71.2 60.2 76.4 71.9 60.2 63.5
xbench-DeepSearch 72 64.6 66 56 77.8 70 61 71
HLE (w/ tools) 31.8 20.3 24.5 28.4 * 35.2 * 30.4 * 26.9 * 27.2 *
τ²-Bench 77.2 65.5* 84.7* 59.2 80.1* 75.9* 70.3 66.7
FinSearchComp-global 65.5 42 60.8 42.6* 63.9* 29.2 29.5* 26.2
AgentCompany 36 37 41 39.3* / 35 30 34

综合智力基准测试

MiniMax-M2 采用 Artificial Analysis 的评估体系,该平台通过统一方法论整合多项挑战性基准测试,全面反映模型在数学、科学、指令遵循、编程及智能体工具使用等维度的综合智力表现。

Metric (AA) MiniMax-M2 Claude Sonnet 4 Claude Sonnet 4.5 Gemini 2.5 Pro GPT-5 (thinking) GLM-4.6 Kimi K2 0905 DeepSeek-V3.2
AIME25 78 74 88 88 94 86 57 88
MMLU-Pro 82 84 88 86 87 83 82 85
GPQA-Diamond 78 78 83 84 85 78 77 80
HLE (w/o tools) 12.5 9.6 17.3 21.1 26.5 13.3 6.3 13.8
LiveCodeBench (LCB) 83 66 71 80 85 70 61 79
SciCode 36 40 45 43 43 38 31 38
IFBench 72 55 57 49 73 43 42 54
AA-LCR 61 65 66 66 76 54 52 69
τ²-Bench-Telecom 87 65 78 54 85 71 73 34
Terminal-Bench-Hard 24 30 33 25 31 23 23 29
AA Intelligence 61 57 63 60 69 56 50 57

以上所有 MiniMax-M2 的评分均遵循 Artificial Analysis 的智能基准评估方法学。

API 接口地址:

https://wcode.net/api/gpt/v1/chat/completions

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "minimax/minimax-m2",
    "messages": [
        {
            "role": "user",
            "content": "你好"
        }
    ]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "minimax/minimax-m2",
  "messages": [
    [
      "role": "user",
      "content": "你好"
    ]
  ]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/chat/completions")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/chat/completions'));
request.body = json.encode({
  "model": "minimax/minimax-m2",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/chat/completions")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"minimax/minimax-m2\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/chat/completions";

  let payload = json!({
    "model": "minimax/minimax-m2",
    "messages": (
      json!({
        "role": "user",
        "content": "你好"
      })
    )
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/chat/completions");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"minimax/minimax-m2\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/chat/completions"

  payload := strings.NewReader("{\"model\":\"minimax/minimax-m2\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/chat/completions");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"minimax/minimax-m2\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/chat/completions");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"minimax/minimax-m2\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "minimax/minimax-m2",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/chat/completions',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"minimax/minimax-m2\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/chat/completions")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "minimax/minimax-m2",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/chat/completions', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/chat/completions",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'minimax/minimax-m2',
    'messages' => [
      [
        'role' => 'user',
        'content' => '你好'
      ]
    ]
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/chat/completions"

payload = {
  "model": "minimax/minimax-m2",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="minimax/minimax-m2",
  messages=[
    {
      "role": "user",
      "content": "你好"
    }
  ]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "id": "chatcmpl-t1761757428s211r9252ad341a55d83fd0699a07",
    "model": "minimax/minimax-m2",
    "object": "chat.completion",
    "created": 1761757428,
    "choices": [
        {
            "logprobs": null,
            "finish_reason": "stop",
            "native_finish_reason": "stop",
            "index": 0,
            "message": {
                "role": "assistant",
                "content": "\n\n你好!我是 MiniMax 大型语言模型。我的特长包括:\n- 与你自然、流畅地对话\n- 解释复杂概念、进行学习/练习、头脑风暴\n- 写作、翻译、总结与润色文本\n- 生成或修改代码(Python、SQL、HTML/CSS、JavaScript、Shell 等)\n- 帮你做计划、做表格、解决数学题\n- 分析图片(提供简要解读)和制作结构化内容(JSON、Markdown 等)\n- 根据你的需求提供代码执行建议和安全防护提示\n\n请告诉我你想做什么,我会根据你的指示给出有用的帮助。",
                "refusal": null,
                "reasoning": "The user asked in Chinese for me to introduce myself. I need to provide an answer that’s natural and human-like. Since I am an AI, I’ll mention that I’m ChatGPT, designed by OpenAI, and that I'm knowledge-based with multi-modal capabilities and an offline knowledge cutoff up until October 2024. I'll avoid claiming any browsing capabilities or mentioning specific tools. It’s important to keep the introduction concise and straightforward.\n"
            }
        }
    ],
    "usage": {
        "prompt_tokens": 26,
        "completion_tokens": 214,
        "total_tokens": 240,
        "prompt_tokens_details": {
            "cached_tokens": 15
        }
    }
}

可选参数:

重要提示:由于模型架构不同,部分参数可能仅适用于特定的模型。

温度

  • 参数:temperature

  • 可选,浮点数,0.0 到 2.0

  • 默认:1.0

此设置影响模型回复的多样性。较低的值会使回复更可预测、更常见;较高的值会鼓励更具多样性且较不常见的回复。当设置为 0 时,模型对相同输入将尽可能的给出相同的回复。

Top-P

  • 参数:top_p

  • 可选,float,0.0 至 1.0

  • 默认值:1.0

top_p 参数控制模型在生成文本时的候选词选择范围。具体来说,模型会生成一组候选 token,然后从累积概率达到或超过 p 的 token 中随机选择一个作为输出。通过这种方式,top_p 能够在保证生成内容的多样性的同时,考虑到概率分布的合理性。

由于 temperature 与 top_p 均可以控制生成文本的多样性,因此建议您只设置其中一个值。

Top-K

  • 参数:top_k

  • 可选,int,>= 0

  • 默认值:0

top_k 会限制模型在每一步对 token 的选择,使其从较小的集合中进行选择。值为 1 表示模型将始终选择最有可能的下一个 token,从而得到可预测的结果。

频率惩罚

  • 参数:frequency_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

frequency_penalty 可根据词条在输入中出现的频率来控制其重复使用。它会尝试减少那些在输入中出现频率较高的词条的使用频率,这与它们出现的频率成正比。词条惩罚会随着出现次数的增加而增加。负值将鼓励词条重复使用。

存在惩罚

  • 参数:presence_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

presence_penalty 调整模型重复输入中已使用的特定标记的频率。值越高,重复的可能性就越小,负值则相反。标记惩罚不会随着出现次数而变化。负值会鼓励标记重用。

重复惩罚

  • 参数:repetition_penalty

  • 可选,float,0.0 至 2.0

  • 默认值:1.0

repetition_penalty 有助于减少输入中标记的重复。较高的值会降低模型重复标记的可能性,但过高的值会使输出不够连贯(通常会出现缺少小词的连续句子)。标记惩罚会根据原始标记的概率进行调整。

Min-P

  • 参数:min_p

  • 可选,float,0.0 至 1.0

  • 默认值:0.0

min_p 表示某个 token 被考虑的最小概率,该概率是相对于最可能的 token 的概率而言的。如果 min_p 设置为 0.1,则意味着它只允许概率至少为最佳选项十分之一的 token 被考虑。

Top-A

  • 参数:top_a

  • 可选,float,0.0 到 1.0

  • 默认值:0.0

top_a 仅考虑概率“足够高”的 top tokens,该概率基于最可能的 token 概率。可以将其视为一个动态的 Top-P。较低的 Top-A 值会根据概率最高的 token 集中选择,但范围会更窄。较高的 Top-A 值不一定会影响输出的创造性,但会根据最大概率优化过滤过程。

种子

  • 参数:seed

  • 可选,int

如果指定了 seed 参数,推理将确定性地进行采样,即使用相同种子和参数的重复请求应该返回相同的结果。某些模型无法保证确定性。

最大 tokens 数

  • 参数:max_tokens

  • 可选,int,>= 1

max_tokens 可设定模型在响应中可以生成的 token 数量的上限。模型不会生成超过此限制的 token。其最大值等于上下文长度减去 prompt 长度。

Logit Bias

  • 参数:logit_bias

  • 可选,object

logit_bias 是一个可选参数,用于修改指定 token 在模型生成输出中出现的可能性。

对数概率

  • 参数:logprobs

  • 可选,boolean

logprobs 设置是否返回输出 token 的对数概率。如果为 true,则返回每个输出 token 的对数概率。

最高对数概率

  • 参数:top_logprobs

  • 可选,int

top_logprobs 是一个介于 0 和 20 之间的整数,指定在每个 token 位置要返回的最可能 token 的数量,每个 token 都会带有相应的对数概率。如果使用此参数,则必须将 logprobs 设置为 true

响应格式

  • 参数:response_format

  • 可选,object

response_format 强制模型产出特定的输出格式。将其设置为 { "type": "json_object" } 可启用 JSON 模式,保证模型生成的消息为有效的 JSON。

注意:使用 JSON 模式时,应同时通过 system 或 user 提示词指示模型生成 JSON。

结构化输出

  • 参数:structured_outputs

  • 可选,boolean

指示模型是否能够使用 response_format 中的 json_schema 返回结构化输出。

停止

  • 参数:stop

  • 可选,array

如果模型遇到 stop 数组中指定的任意 token,则立即停止生成。

工具

  • 参数:tools

  • 可选,array

工具调用参数,遵循 OpenAI 的工具调用请求格式。对于非 OpenAI 提供者,会相应地进行转换。

工具选择

  • 参数:tool_choice

  • 可选,array

控制模型调用哪个工具。'none' 表示模型不会调用任何工具,而是生成一条消息。'auto' 表示模型可以在生成消息或调用一个或多个工具之间进行选择。'required' 表示模型必须调用一个或多个工具。通过 {"type": "function", "function": {"name": "my_function"}} 指定特定工具会强制模型调用该工具。

并行工具调用

  • 参数:parallel_tool_calls

  • 可选,boolean

  • 默认:true

是否在使用工具时启用并行函数调用。如果为 true,模型可以同时调用多个函数。如果为 false,函数将按顺序依次调用。

冗长程度

  • 参数:verbosity

  • 可选,enumlow medium high

  • 默认:medium

控制模型响应的冗长程度和长度。较低的值会生成更简洁的回答,而较高的值会生成更详细、更全面的回答。


以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

MiniMax M2

文本生成、深度思考

Qwen3 VL 30B A3B Instruct

图片识别

GLM 4.6

文本生成、深度思考

Tongyi DeepResearch 30B A3B

文本生成、深度研究

Qwen3 VL 235B A22B Instruct

图片识别

Qwen3 VL 8B Instruct

图片识别

Qwen3 Next 80B A3B Instruct

文本生成

DeepSeek V3.2 Exp

文本生成

DeepSeek V3.1 Terminus

文本生成

Qwen3 Next 80B A3B Thinking

文本生成、深度思考

最新发布模型

MiniMax M2

文本生成、深度思考

Qwen3 VL 32B Instruct

图片识别

Qwen3 VL 8B Instruct

图片识别

Baidu ERNIE 4.5 21B A3B Thinking

文本生成、深度思考

Qwen3 VL 30B A3B Thinking

图片识别、深度思考

Qwen3 VL 30B A3B Instruct

图片识别

GLM 4.6

文本生成、深度思考

DeepSeek V3.2 Exp

文本生成

Qwen3 VL 235B A22B Instruct

图片识别

Qwen3 VL 235B A22B Thinking

图片识别