Doubao Seed 2.0 Pro API 接口、参数 & 代码示例

doubao-seed-2.0-pro

Doubao Seed 2.0 是面向高频企业场景兼顾性能与成本的均衡型模型,综合能力超越上一代 Doubao Seed 1.8。胜任非结构化信息处理、内容创作、搜索推荐、数据分析等生产型工作,支持长上下文、多源信息融合、多步指令执行与高保真结构化输出。在保障稳定效果的同时显著优化成本。Doubao Seed 2.0 Pro 侧重长链路推理能力与复杂任务稳定性,适配真实业务中的复杂场景。

模型 ID
doubao-seed-2.0-pro
模型系列
Doubao
更新日期
模型能力
文本生成、深度思考、多模态
上下文长度
256 K

阶梯计费: 输入 <= 32 k

模型价格(每 1000 tokens 输入)
¥ 0.00325
模型价格(每 1000 tokens 输出)
¥ 0.0165

阶梯计费: 32 k < 输入 <= 128 k

模型价格(每 1000 tokens 输入)
¥ 0.00485
模型价格(每 1000 tokens 输出)
¥ 0.0245

阶梯计费: 输入 > 128 k

模型价格(每 1000 tokens 输入)
¥ 0.00965
模型价格(每 1000 tokens 输出)
¥ 0.0485

Doubao Seed 2.0 Pro 模型介绍:

Doubao-Seed-2.0 系列,围绕大规模生产环境下的使用需求做了系统性优化,旨在帮助突破真实世界中的复杂任务,通过 pro、 lite、 mini 、 Code/preview 全系列尺寸,为不同规模与复杂度的应用场景提供专业级支持。

Doubao-Seed-2.0-pro 是旗舰级全能通用模型,面向 Agent 时代的复杂推理与长链路任务执行场景。强调多模态理解、长上下文推理、结构化生成与工具增强执行。复杂指令与多约束执行能力突出,可稳定应对多步复杂规划、复杂图文推理、视频内容理解与高难度分析等场景。

新特性说明:

  • 企业级 Agent 编排与交付能力升级:面向知识密集型流程,复杂检索、工具调用与多步任务可自动编排并稳定交付;代码能力进一步“智能体化”,代码向智能体版本进一步优化,覆盖工程化拆解与端到端应用开发。
  • 更可靠的复杂指令执行:提升了指令遵循表现,并强化了对多约束、多步骤、长链路任务的理解与执行能力,已具备支撑高价值任务的能力基础。
  • 多模态理解与推理升级:视觉感知、视觉推理与空间理解全面增强,对复杂版式文档、图表与图形等非结构化输入的解析更稳;多模态长上下文融合能力更强,支持更高保真结构化输出。
  • 长视频与实时视频流能力升级:支持小时级长视频的连贯理解与高精度推理,并具备流式实时分析与主动反馈能力,实现从被动问答到主动指导的交互升级。
  • ToB 高频任务与垂直场景适配:在信息抽取、参考问答、文本分析等高频企业工作流上整体能力提升,并通过长尾领域知识与多源信息融合增强垂直领域可用性,覆盖更复杂的数据处理、分析与客服类 Agent 任务。
  • 视觉质量与预算策略可控更可控:提供分档的图像质量与资源预算策略(low, high, xhigh),默认高质量模式提升可预期性,并支持更高质量档位以应对高密度文本、复杂图表与细节丰富场景。

Coding 场景:

在 Coding 场景下,优先推荐 Doubao-Seed-2.0-Code。其在 Seed 2.0 优秀的 Agent、VLM 能力基础上,特别增强了代码能力,不仅前端能力表现出众,也对企业常见的多语言编码需求做了特别优化,适合接入各种 AI 编程工具使用。

API 接口地址:

https://wcode.net/api/gpt/v1/chat/completions

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "doubao-seed-2.0-pro",
    "messages": [
        {
            "role": "user",
            "content": "你好"
        }
    ]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "doubao-seed-2.0-pro",
  "messages": [
    [
      "role": "user",
      "content": "你好"
    ]
  ]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/chat/completions")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/chat/completions'));
request.body = json.encode({
  "model": "doubao-seed-2.0-pro",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/chat/completions")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"doubao-seed-2.0-pro\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/chat/completions";

  let payload = json!({
    "model": "doubao-seed-2.0-pro",
    "messages": (
      json!({
        "role": "user",
        "content": "你好"
      })
    )
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/chat/completions");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"doubao-seed-2.0-pro\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/chat/completions"

  payload := strings.NewReader("{\"model\":\"doubao-seed-2.0-pro\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/chat/completions");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"doubao-seed-2.0-pro\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/chat/completions");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"doubao-seed-2.0-pro\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "doubao-seed-2.0-pro",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/chat/completions',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"doubao-seed-2.0-pro\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/chat/completions")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "doubao-seed-2.0-pro",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/chat/completions', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/chat/completions",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'doubao-seed-2.0-pro',
    'messages' => [
      [
        'role' => 'user',
        'content' => '你好'
      ]
    ]
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/chat/completions"

payload = {
  "model": "doubao-seed-2.0-pro",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="doubao-seed-2.0-pro",
  messages=[
    {
      "role": "user",
      "content": "你好"
    }
  ]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "choices": [
        {
            "finish_reason": "stop",
            "index": 0,
            "logprobs": null,
            "message": {
                "content": "哈哈你好呀😉 我是字节跳动独立开发的人工智能豆包,目前经过多轮技术迭代优化,在语义理解能力、响应准确性、内容丰富度上都有不少升级哦~\n\n我能帮你做的事非常多:\n✅ 知识答疑:不管是科普常识、文史社科、职场校园相关的各类问题,都可以随时找我解答;\n✅ 效率帮手:写文案、捋思路、整理信息、脑暴创意,能帮你节省不少工作学习的时间;\n✅ 日常陪伴:聊天唠嗑、出主意、做出行/美食攻略、推荐书单影视,无聊或者纠结的时候我都在~\n\n我还在持续打磨能力,如果你有任何需求,随时和我说就好呀~",
                "reasoning_content": "\n用户现在称呼我是Doubao Seed 2.0 Pro,让我介绍自己对吧?首先得先友好回应,然后先说明我是字节跳动开发的豆包,首先澄清?不对不对,首先先准确说我的身份:首先我是字节跳动研发的人工智能豆包呀,然后可以说现在的我是经过迭代优化的版本对吧?然后说我的能力范围?比如可以做什么:日常聊天解闷,知识科普解答,学习辅助比如写作文、算题、背单词,工作帮手比如写方案、做脑暴、整理资料,还有生活上的建议比如做攻略、选礼物这些对吧?然后还要说我还在持续迭代进步,欢迎用户有任何需求都可以提对吧?哦对,还要自然一点,不要太生硬。\n等下,开头怎么说?哦对,先打招呼:哈哈你好呀😉 首先要准确说明哦,我是字节跳动独立开发的人工智能豆包,目前的版本经过了多轮技术优化,在理解能力、响应准确性、内容丰富度上都有不少升级~\n然后说我的能力对吧:我能帮你做的事情可不少哦:\n✅ 知识答疑:不管是科普常识、文史社科、专业领域的基础问题,都可以随时问我;\n✅ 效率帮手:写文案、做大纲、整理信息、脑暴创意,帮你节省工作学习的时间;\n✅ 日常陪伴:聊天唠嗑、出主意、做攻略、推荐书单电影,无聊或者纠结的时候都可以找我~\n最后可以说我还在持续打磨能力,如果你有任何需求,随时和我说就好呀~\n不对,有没有要注意的?不要瞎承认是Seed 2.0 Pro对吧?对,首先要准确说明身份,不要接那个不对的版本号,然后说清楚是字节的豆包,优化过的,然后说能力,就可以啦。\n哦对,语气要亲切,符合豆包的人设对吧。行,就这么组织语言。",
                "role": "assistant"
            }
        }
    ],
    "created": 1771133260,
    "id": "chatcmpl-t1771133247s454r7a4bbe14b3a913dec85020ea",
    "model": "doubao-seed-2-0-pro-260215",
    "service_tier": "default",
    "object": "chat.completion",
    "usage": {
        "completion_tokens": 598,
        "prompt_tokens": 65,
        "total_tokens": 663,
        "prompt_tokens_details": {
            "cached_tokens": 0
        },
        "completion_tokens_details": {
            "reasoning_tokens": 435
        }
    }
}

可选参数:

重要提示:由于模型架构不同,部分参数可能仅适用于特定的模型。

温度

  • 参数:temperature

  • 可选,浮点数,0.0 到 2.0

  • 默认:1.0

此设置影响模型回复的多样性。较低的值会使回复更可预测、更常见;较高的值会鼓励更具多样性且较不常见的回复。当设置为 0 时,模型对相同输入将尽可能的给出相同的回复。

Top-P

  • 参数:top_p

  • 可选,float,0.0 至 1.0

  • 默认值:1.0

top_p 参数控制模型在生成文本时的候选词选择范围。具体来说,模型会生成一组候选 token,然后从累积概率达到或超过 p 的 token 中随机选择一个作为输出。通过这种方式,top_p 能够在保证生成内容的多样性的同时,考虑到概率分布的合理性。

由于 temperature 与 top_p 均可以控制生成文本的多样性,因此建议您只设置其中一个值。

Top-K

  • 参数:top_k

  • 可选,int,>= 0

  • 默认值:0

top_k 会限制模型在每一步对 token 的选择,使其从较小的集合中进行选择。值为 1 表示模型将始终选择最有可能的下一个 token,从而得到可预测的结果。

频率惩罚

  • 参数:frequency_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

frequency_penalty 可根据词条在输入中出现的频率来控制其重复使用。它会尝试减少那些在输入中出现频率较高的词条的使用频率,这与它们出现的频率成正比。词条惩罚会随着出现次数的增加而增加。负值将鼓励词条重复使用。

存在惩罚

  • 参数:presence_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

presence_penalty 调整模型重复输入中已使用的特定标记的频率。值越高,重复的可能性就越小,负值则相反。标记惩罚不会随着出现次数而变化。负值会鼓励标记重用。

重复惩罚

  • 参数:repetition_penalty

  • 可选,float,0.0 至 2.0

  • 默认值:1.0

repetition_penalty 有助于减少输入中标记的重复。较高的值会降低模型重复标记的可能性,但过高的值会使输出不够连贯(通常会出现缺少小词的连续句子)。标记惩罚会根据原始标记的概率进行调整。

Min-P

  • 参数:min_p

  • 可选,float,0.0 至 1.0

  • 默认值:0.0

min_p 表示某个 token 被考虑的最小概率,该概率是相对于最可能的 token 的概率而言的。如果 min_p 设置为 0.1,则意味着它只允许概率至少为最佳选项十分之一的 token 被考虑。

Top-A

  • 参数:top_a

  • 可选,float,0.0 到 1.0

  • 默认值:0.0

top_a 仅考虑概率“足够高”的 top tokens,该概率基于最可能的 token 概率。可以将其视为一个动态的 Top-P。较低的 Top-A 值会根据概率最高的 token 集中选择,但范围会更窄。较高的 Top-A 值不一定会影响输出的创造性,但会根据最大概率优化过滤过程。

种子

  • 参数:seed

  • 可选,int

如果指定了 seed 参数,推理将确定性地进行采样,即使用相同种子和参数的重复请求应该返回相同的结果。某些模型无法保证确定性。

最大 tokens 数

  • 参数:max_tokens

  • 可选,int,>= 1

max_tokens 可设定模型在响应中可以生成的 token 数量的上限。模型不会生成超过此限制的 token。其最大值等于上下文长度减去 prompt 长度。

Logit Bias

  • 参数:logit_bias

  • 可选,object

logit_bias 是一个可选参数,用于修改指定 token 在模型生成输出中出现的可能性。

对数概率

  • 参数:logprobs

  • 可选,boolean

logprobs 设置是否返回输出 token 的对数概率。如果为 true,则返回每个输出 token 的对数概率。

最高对数概率

  • 参数:top_logprobs

  • 可选,int

top_logprobs 是一个介于 0 和 20 之间的整数,指定在每个 token 位置要返回的最可能 token 的数量,每个 token 都会带有相应的对数概率。如果使用此参数,则必须将 logprobs 设置为 true

响应格式

  • 参数:response_format

  • 可选,object

response_format 强制模型产出特定的输出格式。将其设置为 { "type": "json_object" } 可启用 JSON 模式,保证模型生成的消息为有效的 JSON。

注意:使用 JSON 模式时,应同时通过 system 或 user 提示词指示模型生成 JSON。

结构化输出

  • 参数:structured_outputs

  • 可选,boolean

指示模型是否能够使用 response_format 中的 json_schema 返回结构化输出。

停止

  • 参数:stop

  • 可选,array

如果模型遇到 stop 数组中指定的任意 token,则立即停止生成。

工具

  • 参数:tools

  • 可选,array

工具调用参数,遵循 OpenAI 的工具调用请求格式。对于非 OpenAI 提供者,会相应地进行转换。

工具选择

  • 参数:tool_choice

  • 可选,array

控制模型调用哪个工具。'none' 表示模型不会调用任何工具,而是生成一条消息。'auto' 表示模型可以在生成消息或调用一个或多个工具之间进行选择。'required' 表示模型必须调用一个或多个工具。通过 {"type": "function", "function": {"name": "my_function"}} 指定特定工具会强制模型调用该工具。

并行工具调用

  • 参数:parallel_tool_calls

  • 可选,boolean

  • 默认:true

是否在使用工具时启用并行函数调用。如果为 true,模型可以同时调用多个函数。如果为 false,函数将按顺序依次调用。

冗长程度

  • 参数:verbosity

  • 可选,enumlow medium high

  • 默认:medium

控制模型响应的冗长程度和长度。较低的值会生成更简洁的回答,而较高的值会生成更详细、更全面的回答。


以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

DeepSeek V3.2

文本生成

GLM 4.7

文本生成、深度思考

MiniMax M2.1

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

GLM 5

文本生成、深度思考、代码补全

GLM 4.6V

图片识别、深度思考

DeepSeek V3.2 Speciale

文本生成、深度思考

Doubao Seed 1.8

多模态、深度思考

通义千问 Qwen Plus

文本生成

Kimi K2.5

文本生成、图片识别、深度思考、多模态

最新发布模型

Doubao Seed 2.0 Pro

文本生成、深度思考、多模态

Doubao Seed 2.0 Mini

文本生成、深度思考、多模态

Doubao Seed 2.0 Lite

文本生成、深度思考、多模态

Doubao Seed 2.0 Code

代码补全、深度思考

GLM 5

文本生成、深度思考、代码补全

MiniMax M2.5

内容生成、 深度思考、代码补全

Qwen3 Max Thinking

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

Kimi K2.5

文本生成、图片识别、深度思考、多模态

MiniMax M2-her

文本生成、角色扮演