GLM 5 API 接口、参数 & 代码示例
z-ai/glm-5
GLM-5 是智谱的旗舰开源基础模型,专为复杂系统设计与长期智能体工作流打造。它面向专业开发者,在大规模编程任务中展现出生产级性能,与领先的闭源模型并驾齐驱。凭借高级智能体规划、深度后端推理与迭代自我修正能力,GLM-5 已超越代码生成,迈向全系统构建与自主执行。
- 模型 ID
- z-ai/glm-5
- 模型系列
- GLM
- 更新日期
- 模型能力
- 文本生成、深度思考、代码补全
- 上下文长度
- 200 K
- 模型价格(每 1000 tokens 输入)
- ¥ 0.011
- 模型价格(每 1000 tokens 输出)
- ¥ 0.035
GLM 5 模型介绍:
GLM-5 目标直指复杂系统工程及长周期智能体任务。规模化仍然是提升通用人工智能智能效率的最关键路径之一。相较于 GLM-4.5,GLM-5 的参数规模从 355B(32B激活)扩展至 744B(40B激活),预训练数据量从 23T token 增加至 28.5T token。GLM-5同时集成了DeepSeek稀疏注意力机制,在保留长上下文能力的同时大幅降低了部署成本。
强化学习旨在弥合预训练模型从胜任到卓越的差距。然而,由于强化学习训练效率低下,在大语言模型上规模化部署强化学习极具挑战。为此,我们开发了slime,一种新颖的异步强化学习基础设施,显著提升了训练吞吐量和效率,实现了更精细的后训练迭代。凭借预训练和后训练的双重突破,GLM-5在广泛学术基准上相较于GLM-4.7取得了显著进步,并在推理、编程和智能体任务中达到全球开源模型最佳水平,不断缩小与前沿模型的差距。
基准测试:
| GLM-5 | GLM-4.7 | DeepSeek-V3.2 | Kimi K2.5 | Claude Opus 4.5 | Gemini 3 Pro | GPT-5.2 (xhigh) | |
|---|---|---|---|---|---|---|---|
| HLE | 30.5 | 24.8 | 25.1 | 31.5 | 28.4 | 37.2 | 35.4 |
| HLE (w/ Tools) | 50.4 | 42.8 | 40.8 | 51.8 | 43.4* | 45.8* | 45.5* |
| AIME 2026 I | 92.7 | 92.9 | 92.7 | 92.5 | 93.3 | 90.6 | - |
| HMMT Nov. 2025 | 96.9 | 93.5 | 90.2 | 91.1 | 91.7 | 93.0 | 97.1 |
| IMOAnswerBench | 82.5 | 82.0 | 78.3 | 81.8 | 78.5 | 83.3 | 86.3 |
| GPQA-Diamond | 86.0 | 85.7 | 82.4 | 87.6 | 87.0 | 91.9 | 92.4 |
| SWE-bench Verified | 77.8 | 73.8 | 73.1 | 76.8 | 80.9 | 76.2 | 80.0 |
| SWE-bench Multilingual | 73.3 | 66.7 | 70.2 | 73.0 | 77.5 | 65.0 | 72.0 |
| Terminal-Bench 2.0 (Terminus 2) | 56.2 / 60.7 † | 41.0 | 39.3 | 50.8 | 59.3 | 54.2 | 54.0 |
| Terminal-Bench 2.0 (Claude Code) | 56.2 / 61.1 † | 32.8 | 46.4 | - | 57.9 | - | - |
| CyberGym | 43.2 | 23.5 | 17.3 | 41.3 | 50.6 | 39.9 | - |
| BrowseComp | 62.0 | 52.0 | 51.4 | 60.6 | 37.0 | 37.8 | - |
| BrowseComp (w/ Context Manage) | 75.9 | 67.5 | 67.6 | 74.9 | 67.8 | 59.2 | 65.8 |
| BrowseComp-Zh | 72.7 | 66.6 | 65.0 | 62.3 | 62.4 | 66.8 | 76.1 |
| τ²-Bench | 89.7 | 87.4 | 85.3 | 80.2 | 91.6 | 90.7 | 85.5 |
| MCP-Atlas (Public Set) | 67.8 | 52.0 | 62.2 | 63.8 | 65.2 | 66.6 | 68.0 |
| Tool-Decathlon | 38.0 | 23.8 | 35.2 | 27.8 | 43.5 | 36.4 | 46.3 |
| Vending Bench 2 | $4,432.12 | $2,376.82 | $1,034.00 | $1,198.46 | $4,967.06 | $5,478.16 | $3,591.33 |
*:指其在完整测试集上的得分。
†:终端测试基准 2.0 的已验证版本,修正了部分模糊指令。 更多评估详情请参阅 Footnote。
Footnote:
- Humanity’s Last Exam (HLE) & other reasoning tasks: We evaluate with a maximum generation length of 131,072 tokens (
temperature=1.0, top_p=0.95, max_new_tokens=131072). By default, we report the text-only subset; results marked with * are from the full set. We use GPT-5.2 (medium) as the judge model. For HLE-with-tools, we use a maximum context length of 202,752 tokens. - SWE-bench & SWE-bench Multilingual: We run the SWE-bench suite with OpenHands using a tailored instruction prompt. Settings:
temperature=0.7, top_p=0.95, max_new_tokens=16384, with a 200K context window. - BrowserComp: Without context management, we retain details from the most recent 5 turns. With context management, we use the same discard-all strategy as DeepSeek-v3.2 and Kimi K2.5.
- Terminal-Bench 2.0 (Terminus 2): We evaluate with the Terminus framework using
timeout=2h, temperature=0.7, top_p=1.0, max_new_tokens=8192, with a 128K context window. Resource limits are capped at 16 CPUs and 32 GB RAM. - Terminal-Bench 2.0 (Claude Code): We evaluate in Claude Code 2.1.14 (think mode, default effort) with
temperature=1.0, top_p=0.95, max_new_tokens=65536. We remove wall-clock time limits due to generation speed, while preserving per-task CPU and memory constraints. Scores are averaged over 5 runs. We fix environment issues introduced by Claude Code and also report results on a verified Terminal-Bench 2.0 dataset that resolves ambiguous instructions. - CyberGym: We evaluate in Claude Code 2.1.18 (think mode, no web tools) with (
temperature=1.0, top_p=1.0, max_new_tokens=32000) and a 250-minute timeout per task. Results are single-run Pass@1 over 1,507 tasks. - MCP-Atlas: All models are evaluated in think mode on the 500-task public subset with a 10-minute timeout per task. We use Gemini 3 Pro as the judge model.
- τ²-bench: We add a small prompt adjustment in Retail and Telecom to avoid failures caused by premature user termination. For Airline, we apply the domain fixes proposed in the Claude Opus 4.5 system card.
- Vending Bench 2: Runs are conducted independently by Andon Labs.
API 接口地址:
https://wcode.net/api/gpt/v1/chat/completions
此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:
base_url替换为https://wcode.net/api/gpt/v1api_key替换为从 https://wcode.net/get-apikey 获取到的 API Key具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。
请求方法:
POST
各编程语言代码示例:
# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
"model": "z-ai/glm-5",
"messages": [
{
"role": "user",
"content": "你好"
}
]
}'
import Foundation
let headers = [
"Authorization": "Bearer API_KEY", // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
"content-type": "application/json"
]
let parameters = [
"model": "z-ai/glm-5",
"messages": [
[
"role": "user",
"content": "你好"
]
]
] as [String : Any]
let postData = JSONSerialization.data(withJSONObject: parameters, options: [])
let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/chat/completions")! as URL,
cachePolicy: .useProtocolCachePolicy,
timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data
let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
if (error != nil) {
print(error as Any)
} else {
let httpResponse = response as? HTTPURLResponse
print(httpResponse)
}
})
dataTask.resume()
var headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer API_KEY' // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/chat/completions'));
request.body = json.encode({
"model": "z-ai/glm-5",
"messages": [
{
"role": "user",
"content": "你好"
}
]
});
request.headers.addAll(headers);
http.StreamedResponse response = await request.send();
if (response.statusCode == 200) {
print(await response.stream.bytesToString());
}
else {
print(response.reasonPhrase);
}
require 'uri'
require 'net/http'
url = URI("https://wcode.net/api/gpt/v1/chat/completions")
http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true
request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY' # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"z-ai/glm-5\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}"
response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;
#[tokio::main]
pub async fn main() {
let url = "https://wcode.net/api/gpt/v1/chat/completions";
let payload = json!({
"model": "z-ai/glm-5",
"messages": (
json!({
"role": "user",
"content": "你好"
})
)
});
let mut headers = reqwest::header::HeaderMap::new();
headers.insert("Authorization", "Bearer API_KEY".parse().unwrap()); // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers.insert("content-type", "application/json".parse().unwrap());
let client = reqwest::Client::new();
let response = client.post(url)
.headers(headers)
.json(&payload)
.send()
.await;
let results = response.unwrap()
.json::<serde_json::Value>()
.await
.unwrap();
dbg!(results);
}
CURL *hnd = curl_easy_init();
curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/chat/completions");
struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY"); // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);
curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"z-ai/glm-5\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");
CURLcode ret = curl_easy_perform(hnd);
package main
import (
"fmt"
"strings"
"net/http"
"io"
)
func main() {
url := "https://wcode.net/api/gpt/v1/chat/completions"
payload := strings.NewReader("{\"model\":\"z-ai/glm-5\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}")
req, _ := http.NewRequest("POST", url, payload)
req.Header.Add("Authorization", "Bearer API_KEY") // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
req.Header.Add("content-type", "application/json")
res, _ := http.DefaultClient.Do(req)
defer res.Body.Close()
body, _ := io.ReadAll(res.Body)
fmt.Println(res)
fmt.Println(string(body))
}
using System.Net.Http.Headers;
var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/chat/completions");
request.Headers.Add("Authorization", "Bearer API_KEY"); // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request.Content = new StringContent("{\"model\":\"z-ai/glm-5\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", null, "application/json");
var response = await client.SendAsync(request);
response.EnsureSuccessStatusCode();
Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/chat/completions");
var request = new RestRequest("", Method.Post);
request.AddHeader("Authorization", "Bearer API_KEY"); // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request.AddHeader("content-type", "application/json");
request.AddParameter("application/json", "{\"model\":\"z-ai/glm-5\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", ParameterType.RequestBody);
var response = client.Execute(request);
const axios = require('axios');
let data = JSON.stringify({
"model": "z-ai/glm-5",
"messages": [
{
"role": "user",
"content": "你好"
}
]
});
let config = {
method: 'post',
maxBodyLength: Infinity,
url: 'https://wcode.net/api/gpt/v1/chat/completions',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer API_KEY' // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
},
data : data
};
axios.request(config).then((response) => {
console.log(JSON.stringify(response.data));
}).catch((error) => {
console.log(error);
});
OkHttpClient client = new OkHttpClient();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\"model\":\"z-ai/glm-5\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");
Request request = new Request.Builder()
.url("https://wcode.net/api/gpt/v1/chat/completions")
.post(body)
.addHeader("Authorization", "Bearer API_KEY") // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
.addHeader("content-type", "application/json")
.build();
Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();
$headers = [
'Content-Type' => 'application/json',
'Authorization' => 'Bearer API_KEY', // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];
$body = '{
"model": "z-ai/glm-5",
"messages": [
{
"role": "user",
"content": "你好"
}
]
}';
$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/chat/completions', $headers, $body);
$response = $client->sendAsync($request)->wait();
echo $response->getBody();
$curl = curl_init();
curl_setopt_array($curl, [
CURLOPT_URL => "https://wcode.net/api/gpt/v1/chat/completions",
CURLOPT_RETURNTRANSFER => true,
CURLOPT_ENCODING => "",
CURLOPT_MAXREDIRS => 5,
CURLOPT_TIMEOUT => 300,
CURLOPT_CUSTOMREQUEST => "POST",
CURLOPT_POSTFIELDS => json_encode([
'model' => 'z-ai/glm-5',
'messages' => [
[
'role' => 'user',
'content' => '你好'
]
]
]),
CURLOPT_HTTPHEADER => [
"Authorization: Bearer API_KEY", // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
"content-type: application/json",
],
]);
$response = curl_exec($curl);
$error = curl_error($curl);
curl_close($curl);
if ($error) {
echo "cURL Error #:" . $error;
} else {
echo $response;
}
import requests
import json
url = "https://wcode.net/api/gpt/v1/chat/completions"
payload = {
"model": "z-ai/glm-5",
"messages": [
{
"role": "user",
"content": "你好"
}
]
}
headers = {
"Authorization": "Bearer API_KEY", # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
"content-type": "application/json"
}
response = requests.post(url, json=payload, headers=headers)
print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI
client = OpenAI(
base_url="https://wcode.net/api/gpt/v1",
api_key="API_KEY" # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)
completion = client.chat.completions.create(
model="z-ai/glm-5",
messages=[
{
"role": "user",
"content": "你好"
}
]
)
print(completion.choices[0].message.content)
API 响应示例:
{
"id": "chatcmpl-t1770879783s944r12cb68d392528f82e64af7ef",
"model": "z-ai/glm-5",
"object": "chat.completion",
"created": 1770879785,
"choices": [
{
"logprobs": null,
"finish_reason": "stop",
"native_finish_reason": "stop",
"index": 0,
"message": {
"role": "assistant",
"content": "你好!我是由Z.ai训练的GLM大语言模型,我的设计目的是通过自然语言处理技术为用户提供信息和帮助。\n\n我被训练用于理解问题、生成文本、回答知识和提供创意建议,不过我也有知识边界,无法进行实时互动或执行实际操作。我致力于以尊重、有益的方式与用户交流,同时保护用户隐私。\n\n有什么我能帮助你的问题或话题吗?我很乐意尽我所能为你提供支持。",
"refusal": null,
"reasoning": "回答用户的问题,需要先正确认识用户的问题。用户想知道我是一个什么样的存在,我需要简要清晰地介绍自己的身份和功能。首先,我应该表明我是一个语言模型,并简要介绍我的主要功能和特点。然后,我可以提及我的开发背景和目的,即通过自然语言处理技术帮助人们解决问题、提供信息。最后,我可以表达出愿意帮助用户的意愿,让用户知道我随时准备为他们提供支持和帮助。\n\n这样,我的回答将涵盖身份、功能、背景和目的等方面,同时也表达了帮助用户的意愿,符合一个友好、专业的语言模型形象。"
}
}
],
"usage": {
"prompt_tokens": 15,
"completion_tokens": 210,
"total_tokens": 225,
"prompt_tokens_details": {
"cached_tokens": 0,
"audio_tokens": 0
},
"completion_tokens_details": {
"reasoning_tokens": 229,
"audio_tokens": 0
}
}
}
可选参数:
- 温度
- Top-P
- Top-K
- 频率惩罚
- 存在惩罚
- 重复惩罚
- Min-P
- Top-A
- 种子
- 最大 tokens 数
- Logit Bias
- 对数概率
- 最高对数概率
- 响应格式
- 结构化输出
- 停止
- 工具
- 工具选择
- 并行工具调用
- 冗长程度
重要提示:由于模型架构不同,部分参数可能仅适用于特定的模型。
温度
-
参数:
temperature -
可选,浮点数,0.0 到 2.0
-
默认:
1.0
此设置影响模型回复的多样性。较低的值会使回复更可预测、更常见;较高的值会鼓励更具多样性且较不常见的回复。当设置为 0 时,模型对相同输入将尽可能的给出相同的回复。
Top-P
-
参数:
top_p -
可选,float,0.0 至 1.0
-
默认值:
1.0
top_p 参数控制模型在生成文本时的候选词选择范围。具体来说,模型会生成一组候选 token,然后从累积概率达到或超过 p 的 token 中随机选择一个作为输出。通过这种方式,top_p 能够在保证生成内容的多样性的同时,考虑到概率分布的合理性。
由于 temperature 与 top_p 均可以控制生成文本的多样性,因此建议您只设置其中一个值。
Top-K
-
参数:
top_k -
可选,int,>= 0
-
默认值:
0
top_k 会限制模型在每一步对 token 的选择,使其从较小的集合中进行选择。值为 1 表示模型将始终选择最有可能的下一个 token,从而得到可预测的结果。
频率惩罚
-
参数:
frequency_penalty -
可选,float,-2.0 至 2.0
-
默认值:
0.0
frequency_penalty 可根据词条在输入中出现的频率来控制其重复使用。它会尝试减少那些在输入中出现频率较高的词条的使用频率,这与它们出现的频率成正比。词条惩罚会随着出现次数的增加而增加。负值将鼓励词条重复使用。
存在惩罚
-
参数:
presence_penalty -
可选,float,-2.0 至 2.0
-
默认值:
0.0
presence_penalty 调整模型重复输入中已使用的特定标记的频率。值越高,重复的可能性就越小,负值则相反。标记惩罚不会随着出现次数而变化。负值会鼓励标记重用。
重复惩罚
-
参数:
repetition_penalty -
可选,float,0.0 至 2.0
-
默认值:
1.0
repetition_penalty 有助于减少输入中标记的重复。较高的值会降低模型重复标记的可能性,但过高的值会使输出不够连贯(通常会出现缺少小词的连续句子)。标记惩罚会根据原始标记的概率进行调整。
Min-P
-
参数:
min_p -
可选,float,0.0 至 1.0
-
默认值:
0.0
min_p 表示某个 token 被考虑的最小概率,该概率是相对于最可能的 token 的概率而言的。如果 min_p 设置为 0.1,则意味着它只允许概率至少为最佳选项十分之一的 token 被考虑。
Top-A
-
参数:
top_a -
可选,float,0.0 到 1.0
-
默认值:
0.0
top_a 仅考虑概率“足够高”的 top tokens,该概率基于最可能的 token 概率。可以将其视为一个动态的 Top-P。较低的 Top-A 值会根据概率最高的 token 集中选择,但范围会更窄。较高的 Top-A 值不一定会影响输出的创造性,但会根据最大概率优化过滤过程。
种子
-
参数:
seed -
可选,int
如果指定了 seed 参数,推理将确定性地进行采样,即使用相同种子和参数的重复请求应该返回相同的结果。某些模型无法保证确定性。
最大 tokens 数
-
参数:
max_tokens -
可选,int,>= 1
max_tokens 可设定模型在响应中可以生成的 token 数量的上限。模型不会生成超过此限制的 token。其最大值等于上下文长度减去 prompt 长度。
Logit Bias
-
参数:
logit_bias -
可选,object
logit_bias 是一个可选参数,用于修改指定 token 在模型生成输出中出现的可能性。
对数概率
-
参数:
logprobs -
可选,boolean
logprobs 设置是否返回输出 token 的对数概率。如果为 true,则返回每个输出 token 的对数概率。
最高对数概率
-
参数:
top_logprobs -
可选,int
top_logprobs 是一个介于 0 和 20 之间的整数,指定在每个 token 位置要返回的最可能 token 的数量,每个 token 都会带有相应的对数概率。如果使用此参数,则必须将 logprobs 设置为 true。
响应格式
-
参数:
response_format -
可选,object
response_format 强制模型产出特定的输出格式。将其设置为 { "type": "json_object" } 可启用 JSON 模式,保证模型生成的消息为有效的 JSON。
注意:使用 JSON 模式时,应同时通过 system 或 user 提示词指示模型生成 JSON。
结构化输出
-
参数:
structured_outputs -
可选,boolean
指示模型是否能够使用 response_format 中的 json_schema 返回结构化输出。
停止
-
参数:
stop -
可选,array
如果模型遇到 stop 数组中指定的任意 token,则立即停止生成。
工具
-
参数:
tools -
可选,array
工具调用参数,遵循 OpenAI 的工具调用请求格式。对于非 OpenAI 提供者,会相应地进行转换。
工具选择
-
参数:
tool_choice -
可选,array
控制模型调用哪个工具。'none' 表示模型不会调用任何工具,而是生成一条消息。'auto' 表示模型可以在生成消息或调用一个或多个工具之间进行选择。'required' 表示模型必须调用一个或多个工具。通过 {"type": "function", "function": {"name": "my_function"}} 指定特定工具会强制模型调用该工具。
并行工具调用
-
参数:
parallel_tool_calls -
可选,boolean
-
默认:true
是否在使用工具时启用并行函数调用。如果为 true,模型可以同时调用多个函数。如果为 false,函数将按顺序依次调用。
冗长程度
-
参数:
verbosity -
可选,enum,
lowmediumhigh -
默认:medium
控制模型响应的冗长程度和长度。较低的值会生成更简洁的回答,而较高的值会生成更详细、更全面的回答。
以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:
(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)
![]()