豆包文本向量模型-Large 250515 API 接口、参数 & 代码示例

doubao-embedding-large-text-250515

Doubao-embedding-large相比Doubao-embedding拥有更大的模型参数量,中英文Retrieval效果领先。主要面向向量检索的使用场景,支持中、英双语。

模型 ID
doubao-embedding-large-text-250515
模型系列
Doubao
更新日期
模型能力
Embedding 向量化、文本嵌入
上下文长度
128 K
模型价格(每 1000 tokens 输入)
¥ 0.0009
模型价格(每 1000 tokens 输出)
¥ 0.0009

豆包文本向量模型-Large 250515 模型介绍:

Doubao Embedding Large 250515 基于 Seed1.5 (Doubao-1.5-pro) 进一步训练。在权威测评榜单 MTEB 上,达到了中英文 SOTA 效果。除了通用 Embedding 任务外,团队还额外优化了模型在推理密集的检索任务上的能力,并在对应榜单 BRIGHT 上也达到 SOTA。

API 接口地址:

https://wcode.net/api/gpt/v1/embeddings

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/embeddings' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "doubao-embedding-large-text-250515",
    "input": ["苹果", "西瓜", "橙子"]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "doubao-embedding-large-text-250515",
  "input": ["苹果", "西瓜", "橙子"]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/embeddings")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/embeddings'));
request.body = json.encode({
  "model": "doubao-embedding-large-text-250515",
  "input": ["苹果", "西瓜", "橙子"]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/embeddings")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"doubao-embedding-large-text-250515\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/embeddings";

  let payload = json!({
    "model": "doubao-embedding-large-text-250515",
    "input": ["苹果", "西瓜", "橙子"]
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/embeddings");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"doubao-embedding-large-text-250515\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/embeddings"

  payload := strings.NewReader("{\"model\":\"doubao-embedding-large-text-250515\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/embeddings");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"doubao-embedding-large-text-250515\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/embeddings");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"doubao-embedding-large-text-250515\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "doubao-embedding-large-text-250515",
  "input": ["苹果", "西瓜", "橙子"]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/embeddings',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"doubao-embedding-large-text-250515\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/embeddings")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "doubao-embedding-large-text-250515",
  "input": ["苹果", "西瓜", "橙子"]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/embeddings', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/embeddings",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'doubao-embedding-large-text-250515',
    'input' => ['苹果', '西瓜', '橙子']
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/embeddings"

payload = {
  "model": "doubao-embedding-large-text-250515",
  "input": ["苹果", "西瓜", "橙子"]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="doubao-embedding-large-text-250515",
  input=["苹果", "西瓜", "橙子"]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "created": 1770400458,
    "id": "chatcmpl-t1770400458s4r5ccefddde7169dd335f423ea",
    "data": [
        {
            "embedding": [
                0.205078125,
                -0.37109375,
                0.9140625,
                -0.490234375,
                -0.6640625,
                ...
            ],
            "index": 0,
            "object": "embedding"
        },
        {
            "embedding": [
                0.51171875,
                0.921875,
                0.4453125,
                -2.125,
                -0.7578125,
                ...
            ],
            "index": 1,
            "object": "embedding"
        },
        {
            "embedding": [
                0.376953125,
                0.21875,
                1.1015625,
                -1.0625,
                -1.4453125,
                ...
            ],
            "index": 2,
            "object": "embedding"
        }
    ],
    "model": "doubao-embedding-large-text-250515",
    "object": "list",
    "usage": {
        "prompt_tokens": 6,
        "total_tokens": 6
    }
}

以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

DeepSeek V3.2

文本生成

GLM 4.7

文本生成、深度思考

MiniMax M2.1

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

GLM 5

文本生成、深度思考、代码补全

GLM 4.6V

图片识别、深度思考

Doubao Seed 2.0 Code

代码补全、深度思考

DeepSeek V3.2 Speciale

文本生成、深度思考

Doubao Seed 1.8

多模态、深度思考

通义千问 Qwen Plus

文本生成

最新发布模型

Qwen3.5 397B A17B

文本生成、深度思考、多模态

Doubao Seed 2.0 Code

代码补全、深度思考

Doubao Seed 2.0 Lite

文本生成、深度思考、多模态

Doubao Seed 2.0 Mini

文本生成、深度思考、多模态

Qwen 3.5 Plus

文本生成、深度思考、多模态

Doubao Seed 2.0 Pro

文本生成、深度思考、多模态

GLM 5

文本生成、深度思考、代码补全

MiniMax M2.5

内容生成、 深度思考、代码补全

Qwen3 Max Thinking

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全