Qwen3.5 397B A17B API 接口、参数 & 代码示例

qwen/qwen3.5-397b-a17b

Qwen 3.5 系列 397B-A17B 原生视觉语言模型采用了混合架构,该架构将线性注意力机制与稀疏混合专家模型相结合,实现了更高的推理效率。该模型在语言理解、逻辑推理、代码生成、智能体相关任务、图像理解、视频理解以及图形用户界面交互等多个任务中展现出顶尖性能,达到业界领先水平。凭借强大的代码生成和智能体能力,该模型在各类智能体应用中表现出卓越的泛化性能。

模型 ID
qwen/qwen3.5-397b-a17b
模型系列
Qwen
更新日期
模型能力
文本生成、深度思考、多模态
上下文长度
256 K

阶梯计费: 输入 <= 128 k

模型价格(每 1000 tokens 输入)
¥ 0.00175
模型价格(每 1000 tokens 输出)
¥ 0.0125

阶梯计费: 输入 > 128 k

模型价格(每 1000 tokens 输入)
¥ 0.005
模型价格(每 1000 tokens 输出)
¥ 0.03

Qwen3.5 397B A17B 模型介绍:

Qwen 3.5 系列模型具有以下提升:

  • 统一的视觉—语言基础:在多模态 token 上进行的早期融合训练,使其在跨代比较中与 Qwen3 达到同等水平,并在推理、编码、代理与视觉理解等基准上优于 Qwen3-VL 模型。

  • 高效混合架构:门控 Delta 网络与稀疏专家混合(Mixture-of-Experts)相结合,提供高吞吐量的推理能力,同时将延迟和成本开销降至最小。

  • 可扩展的强化学习泛化:在百万级智能体环境中扩展的强化学习,面对逐步复杂的任务分布,增强对真实世界任务的鲁棒适应性。

  • 全球语言覆盖:支持扩展到 201 种语言和方言,便于包容性的全球部署,并具备对文化与区域差异的细致理解。

  • 新一代训练基础设施:在与仅文本训练相比时,多模态训练效率接近 100%;并支持异步强化学习框架,用于大规模智能体支架与环境编排。

基准测试结果

API 接口地址:

https://wcode.net/api/gpt/v1/chat/completions

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "qwen/qwen3.5-397b-a17b",
    "messages": [
        {
            "role": "user",
            "content": "你好"
        }
    ]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "qwen/qwen3.5-397b-a17b",
  "messages": [
    [
      "role": "user",
      "content": "你好"
    ]
  ]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/chat/completions")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/chat/completions'));
request.body = json.encode({
  "model": "qwen/qwen3.5-397b-a17b",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/chat/completions")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"qwen/qwen3.5-397b-a17b\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/chat/completions";

  let payload = json!({
    "model": "qwen/qwen3.5-397b-a17b",
    "messages": (
      json!({
        "role": "user",
        "content": "你好"
      })
    )
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/chat/completions");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"qwen/qwen3.5-397b-a17b\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/chat/completions"

  payload := strings.NewReader("{\"model\":\"qwen/qwen3.5-397b-a17b\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/chat/completions");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"qwen/qwen3.5-397b-a17b\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/chat/completions");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"qwen/qwen3.5-397b-a17b\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "qwen/qwen3.5-397b-a17b",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/chat/completions',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"qwen/qwen3.5-397b-a17b\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/chat/completions")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "qwen/qwen3.5-397b-a17b",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/chat/completions', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/chat/completions",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'qwen/qwen3.5-397b-a17b',
    'messages' => [
      [
        'role' => 'user',
        'content' => '你好'
      ]
    ]
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/chat/completions"

payload = {
  "model": "qwen/qwen3.5-397b-a17b",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="qwen/qwen3.5-397b-a17b",
  messages=[
    {
      "role": "user",
      "content": "你好"
    }
  ]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "id": "chatcmpl-t1771519164s161r02bb859b4c8a358d45927f8e",
    "model": "qwen/qwen3.5-397b-a17b",
    "object": "chat.completion",
    "created": 1771519166,
    "choices": [
        {
            "logprobs": null,
            "finish_reason": "stop",
            "native_finish_reason": "stop",
            "index": 0,
            "message": {
                "role": "assistant",
                "content": "你好!我是 Qwen3.5,是通义千问系列中最新推出的模型。不过需要说明的是,我并不是\"397B A17B\"这样的参数量版本——我的具体参数量属于内部信息,但可以告诉你的是,我在架构效率和能力上相比 Qwen3 有了全面升级,比如支持 256K 超长上下文、100 多种语言处理、更精准的逻辑推理和代码生成等。\n\n我的核心优势包括:\n- 📚 **长文档理解**:能轻松处理数十万字的文档或长视频内容,精准定位关键信息;\n- 🌍 **多语言交互**:支持全球主流语言,无论是翻译、写作还是跨文化沟通都很流畅;\n- 🧠 **深度推理**:在数学、科学问题及复杂任务规划上表现更可靠,能拆解多步骤问题;\n- 🖼️ **视觉分析**:不仅能识别图像内容,还能分析图表、公式,甚至解读因果关系;\n- 💻 **全栈编码**:从代码生成、调试到前端页面实现,都能提供专业级支持;\n- 🤖 **智能体协作**:可自主规划任务,调用工具完成搜索、执行代码等复杂操作。\n\n我的训练数据截止时间是 2026 年,知识更新更及时。如果你有任何具体问题或需要帮助的任务,欢迎随时告诉我! 😊",
                "refusal": null,
                "reasoning": "首先,我需要识别用户的问题。用户说:“你好,Qwen3.5 397B A17B,请介绍一下你自己”。这里用户可能误写了我的一些参数,比如\"397B A17B\"可能是指模型的参数量或其他技术细节,但作为 Qwen3.5,我的实际参数量并不是 397B 或 A17B。我需要礼貌地纠正这一点,同时介绍自己。\n\n接下来,我需要回顾自己的身份。我是 Qwen3.5,是通义千问系列的最新版本,相比 Qwen3 有显著的升级。我需要简要说明我的主要改进,比如上下文窗口、多语言支持、推理能力、视觉分析、智能体规划、代码能力、对齐优化等。但要注意不要过于技术化,保持口语化,让用户容易理解。\n\n用户可能对我的能力感兴趣,或者想确认我的身份。我需要明确说明我是 Qwen3.5,而不是其他版本,并指出用户提到的参数可能有误。同时,要友好,避免让用户感到被纠正的不快。\n\n需要检查是否有敏感内容或需要避免的信息。比如,参数量可能涉及商业机密,不应该具体说明,所以应该避免讨论具体的参数字数,而是强调能力的提升。\n\n另外,用户可能希望了解我能做什么,所以需要列举一些关键能力,但要用简洁的例子,比如处理长文档、多语言翻译、逻辑推理、图表分析、代码生成等。同时,提到我的训练数据截止时间是 2026 年,以显示信息的时效性。\n\n还要注意结构清晰,分点说明可能更好,但因为是口语化回复,可以用自然的段落。需要确保回答准确,不夸大,符合事实。\n\n最后,邀请用户提问或给出任务,促进互动。保持友好和专业的语气。"
            }
        }
    ],
    "system_fingerprint": null,
    "usage": {
        "prompt_tokens": 30,
        "completion_tokens": 677,
        "total_tokens": 707,
        "prompt_tokens_details": {
            "cached_tokens": 0
        },
        "completion_tokens_details": {
            "reasoning_tokens": 373
        }
    }
}

可选参数:

重要提示:由于模型架构不同,部分参数可能仅适用于特定的模型。

温度

  • 参数:temperature

  • 可选,浮点数,0.0 到 2.0

  • 默认:1.0

此设置影响模型回复的多样性。较低的值会使回复更可预测、更常见;较高的值会鼓励更具多样性且较不常见的回复。当设置为 0 时,模型对相同输入将尽可能的给出相同的回复。

Top-P

  • 参数:top_p

  • 可选,float,0.0 至 1.0

  • 默认值:1.0

top_p 参数控制模型在生成文本时的候选词选择范围。具体来说,模型会生成一组候选 token,然后从累积概率达到或超过 p 的 token 中随机选择一个作为输出。通过这种方式,top_p 能够在保证生成内容的多样性的同时,考虑到概率分布的合理性。

由于 temperature 与 top_p 均可以控制生成文本的多样性,因此建议您只设置其中一个值。

Top-K

  • 参数:top_k

  • 可选,int,>= 0

  • 默认值:0

top_k 会限制模型在每一步对 token 的选择,使其从较小的集合中进行选择。值为 1 表示模型将始终选择最有可能的下一个 token,从而得到可预测的结果。

频率惩罚

  • 参数:frequency_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

frequency_penalty 可根据词条在输入中出现的频率来控制其重复使用。它会尝试减少那些在输入中出现频率较高的词条的使用频率,这与它们出现的频率成正比。词条惩罚会随着出现次数的增加而增加。负值将鼓励词条重复使用。

存在惩罚

  • 参数:presence_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

presence_penalty 调整模型重复输入中已使用的特定标记的频率。值越高,重复的可能性就越小,负值则相反。标记惩罚不会随着出现次数而变化。负值会鼓励标记重用。

重复惩罚

  • 参数:repetition_penalty

  • 可选,float,0.0 至 2.0

  • 默认值:1.0

repetition_penalty 有助于减少输入中标记的重复。较高的值会降低模型重复标记的可能性,但过高的值会使输出不够连贯(通常会出现缺少小词的连续句子)。标记惩罚会根据原始标记的概率进行调整。

Min-P

  • 参数:min_p

  • 可选,float,0.0 至 1.0

  • 默认值:0.0

min_p 表示某个 token 被考虑的最小概率,该概率是相对于最可能的 token 的概率而言的。如果 min_p 设置为 0.1,则意味着它只允许概率至少为最佳选项十分之一的 token 被考虑。

Top-A

  • 参数:top_a

  • 可选,float,0.0 到 1.0

  • 默认值:0.0

top_a 仅考虑概率“足够高”的 top tokens,该概率基于最可能的 token 概率。可以将其视为一个动态的 Top-P。较低的 Top-A 值会根据概率最高的 token 集中选择,但范围会更窄。较高的 Top-A 值不一定会影响输出的创造性,但会根据最大概率优化过滤过程。

种子

  • 参数:seed

  • 可选,int

如果指定了 seed 参数,推理将确定性地进行采样,即使用相同种子和参数的重复请求应该返回相同的结果。某些模型无法保证确定性。

最大 tokens 数

  • 参数:max_tokens

  • 可选,int,>= 1

max_tokens 可设定模型在响应中可以生成的 token 数量的上限。模型不会生成超过此限制的 token。其最大值等于上下文长度减去 prompt 长度。

Logit Bias

  • 参数:logit_bias

  • 可选,object

logit_bias 是一个可选参数,用于修改指定 token 在模型生成输出中出现的可能性。

对数概率

  • 参数:logprobs

  • 可选,boolean

logprobs 设置是否返回输出 token 的对数概率。如果为 true,则返回每个输出 token 的对数概率。

最高对数概率

  • 参数:top_logprobs

  • 可选,int

top_logprobs 是一个介于 0 和 20 之间的整数,指定在每个 token 位置要返回的最可能 token 的数量,每个 token 都会带有相应的对数概率。如果使用此参数,则必须将 logprobs 设置为 true

响应格式

  • 参数:response_format

  • 可选,object

response_format 强制模型产出特定的输出格式。将其设置为 { "type": "json_object" } 可启用 JSON 模式,保证模型生成的消息为有效的 JSON。

注意:使用 JSON 模式时,应同时通过 system 或 user 提示词指示模型生成 JSON。

结构化输出

  • 参数:structured_outputs

  • 可选,boolean

指示模型是否能够使用 response_format 中的 json_schema 返回结构化输出。

停止

  • 参数:stop

  • 可选,array

如果模型遇到 stop 数组中指定的任意 token,则立即停止生成。

工具

  • 参数:tools

  • 可选,array

工具调用参数,遵循 OpenAI 的工具调用请求格式。对于非 OpenAI 提供者,会相应地进行转换。

工具选择

  • 参数:tool_choice

  • 可选,array

控制模型调用哪个工具。'none' 表示模型不会调用任何工具,而是生成一条消息。'auto' 表示模型可以在生成消息或调用一个或多个工具之间进行选择。'required' 表示模型必须调用一个或多个工具。通过 {"type": "function", "function": {"name": "my_function"}} 指定特定工具会强制模型调用该工具。

并行工具调用

  • 参数:parallel_tool_calls

  • 可选,boolean

  • 默认:true

是否在使用工具时启用并行函数调用。如果为 true,模型可以同时调用多个函数。如果为 false,函数将按顺序依次调用。

冗长程度

  • 参数:verbosity

  • 可选,enumlow medium high

  • 默认:medium

控制模型响应的冗长程度和长度。较低的值会生成更简洁的回答,而较高的值会生成更详细、更全面的回答。


以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

DeepSeek V3.2

文本生成

GLM 4.7

文本生成、深度思考

MiniMax M2.1

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

GLM 5

文本生成、深度思考、代码补全

GLM 4.6V

图片识别、深度思考

DeepSeek V3.2 Speciale

文本生成、深度思考

Doubao Seed 1.8

多模态、深度思考

Doubao Seed 2.0 Code

代码补全、深度思考

通义千问 Qwen Plus

文本生成

最新发布模型

Qwen3.5 397B A17B

文本生成、深度思考、多模态

Doubao Seed 2.0 Code

代码补全、深度思考

Doubao Seed 2.0 Lite

文本生成、深度思考、多模态

Doubao Seed 2.0 Mini

文本生成、深度思考、多模态

Qwen 3.5 Plus

文本生成、深度思考、多模态

Doubao Seed 2.0 Pro

文本生成、深度思考、多模态

GLM 5

文本生成、深度思考、代码补全

MiniMax M2.5

内容生成、 深度思考、代码补全

Qwen3 Max Thinking

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全