Hunyuan-T1-Vision 视觉深度思考大模型 API 接口、参数 & 代码示例

hunyuan-t1-vision

混元多模态理解深度思考模型,支持多模态原生长思维链,擅长处理各种图片推理场景,在理科难题上相比快思考模型全面提升。

模型 ID
hunyuan-t1-vision
模型系列
Hunyuan
更新日期
模型能力
图片理解、深度思考
上下文长度
32 K
模型价格(每 1000 tokens 输入)
¥ 0.0035
模型价格(每 1000 tokens 输出)
¥ 0.01015

API 接口地址:

https://wcode.net/api/gpt/v1/chat/completions

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "hunyuan-t1-vision",
    "messages": [
        {
            "role": "user",
            "content": "你好"
        }
    ]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "hunyuan-t1-vision",
  "messages": [
    [
      "role": "user",
      "content": "你好"
    ]
  ]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/chat/completions")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/chat/completions'));
request.body = json.encode({
  "model": "hunyuan-t1-vision",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/chat/completions")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"hunyuan-t1-vision\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/chat/completions";

  let payload = json!({
    "model": "hunyuan-t1-vision",
    "messages": (
      json!({
        "role": "user",
        "content": "你好"
      })
    )
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/chat/completions");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"hunyuan-t1-vision\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/chat/completions"

  payload := strings.NewReader("{\"model\":\"hunyuan-t1-vision\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/chat/completions");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"hunyuan-t1-vision\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/chat/completions");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"hunyuan-t1-vision\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "hunyuan-t1-vision",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/chat/completions',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"hunyuan-t1-vision\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/chat/completions")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "hunyuan-t1-vision",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/chat/completions', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/chat/completions",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'hunyuan-t1-vision',
    'messages' => [
      [
        'role' => 'user',
        'content' => '你好'
      ]
    ]
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/chat/completions"

payload = {
  "model": "hunyuan-t1-vision",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="hunyuan-t1-vision",
  messages=[
    {
      "role": "user",
      "content": "你好"
    }
  ]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "id": "chatcmpl-t1768918367s409r4889cb2b9a43acddc66cd665",
    "object": "chat.completion",
    "created": 1768918401,
    "model": "hunyuan-t1-vision",
    "system_fingerprint": "",
    "choices": [
        {
            "index": 0,
            "message": {
                "role": "assistant",
                "content": "你好!我是 **Hunyuan-T1-Vision**,是腾讯基于 **混元大模型(Hunyuan)** 体系打造的一款 **视觉深度思考大模型**。\n\n### 我的特点可以概括为以下几点:\n\n---\n\n## 🧠 一、我是谁?\n\n我是一个结合了 **视觉理解能力** 和 **深度推理能力** 的多模态大模型,不仅能够“看懂”图像,还能像人类一样进行深入的思考、分析和推理,帮助你解决与图像相关的复杂问题。\n\n---\n\n## 👁️ 二、我的核心能力\n\n### 1. **强大的视觉理解能力**\n- 我可以识别和理解各种类型的图像内容,包括但不限于:\n  - 自然场景(风景、街道等)\n  - 文档图片(文字、表格、图表、PDF截图等)\n  - 照片(人物、物品、场景细节)\n  - 图表与数据可视化(柱状图、饼图、流程图等)\n  - 手写文字、数学公式、示意图等\n- 不仅能识别图中有什么,还能理解其中的上下文、逻辑关系和隐含信息。\n\n### 2. **深度思考与推理能力**\n- 我不只是“看图说话”,而是会像人一样进行**多步推理、逻辑分析、归纳总结**。\n- 面对复杂任务(比如从图表中推导结论、分析图像中的异常、辅助决策等),我能逐步拆解问题,给出条理清晰的分析过程和可信的答案。\n\n### 3. **多模态交互**\n- 你可以上传图片,我能够图文结合地理解你的问题,并给出精准回答。\n- 支持**“视觉+文本”联合推理**,例如:根据一张设计图提出改进建议,或根据实验图表分析趋势并给出科学解释。\n\n---\n\n## 💡 三、我能帮你做什么?\n\n以下是我可以为你提供帮助的一些典型场景:\n\n| 应用场景 | 示例 |\n|---------|------|\n| **教育学习** | 看图解题、分析实验装置图、解读生物/化学结构图、辅助阅读教材插图等 |\n| **办公与文档** | 读取扫描版 PDF、表格图片内容,提取关键信息,总结文档要点 |\n| **设计与创意** | 分析设计稿、UI界面图,提供优化建议;解读艺术作品风格与构图 |\n| **科研与数据分析** | 解读科研论文中的图表、实验结果图,辅助数据分析和结论推导 |\n| **生活实用** | 识别商品、植物、地标、钞票、发票等;帮助理解复杂说明书或示意图 |\n| **医疗辅助(非诊断用途)** | 辅助查看医学影像图说明、健康科普图解等(不替代专业医疗意见) |\n\n---\n\n## 🔍 四、我与其他模型的不同之处?\n\n- **深度思考链条**:我不仅给出答案,还会展示我的推理过程,帮助你理解“为什么”。\n- **视觉+语言深度融合**:不是简单的“看图+回答”,而是真正将图像信息与语言推理融为一体,进行综合判断。\n- **高精度与高鲁棒性**:针对复杂、模糊、多元素图像,我也具备较强的理解和适应能力。\n\n---\n\n## 🤝 五、如何使用我?\n\n你可以通过以下方式与我互动:\n\n1. **上传图片 + 提问**:直接发送你想要我看的图片,并提出具体问题,比如“这张图讲了什么?”、“这个图表说明了什么趋势?”、“这里可能出了什么问题?”等。\n2. **纯文本问题**:如果你暂时没有图片,也可以像普通大模型一样,和我进行文本交流,我同样具备强大的语言理解与生成能力。\n3. **图文结合任务**:描述你希望我如何结合图像与文字信息来帮你解决问题,我会按步骤推理并给出答案。\n\n---\n\n## ✨ 总结\n\n我是 **Hunyuan-T1-Vision**,一个会“深度思考”的视觉大模型,致力于成为你在图像理解、视觉分析、复杂推理上的得力助手。无论你是学生、科研人员、设计师,还是普通用户,只要你需要“看懂图”并“想明白”,我都可以帮你做到。\n\n欢迎你随时上传图片或提出问题,我们一起来探索视觉世界的奥秘吧!🔍✨"
            },
            "finish_reason": "stop"
        }
    ],
    "usage": {
        "prompt_tokens": 35,
        "completion_tokens": 913,
        "total_tokens": 948
    },
    "note": "以上内容为AI生成,不代表开发者立场,请勿删除或修改本标记"
}

可选参数:

重要提示:由于模型架构不同,部分参数可能仅适用于特定的模型。

温度

  • 参数:temperature

  • 可选,浮点数,0.0 到 2.0

  • 默认:1.0

此设置影响模型回复的多样性。较低的值会使回复更可预测、更常见;较高的值会鼓励更具多样性且较不常见的回复。当设置为 0 时,模型对相同输入将尽可能的给出相同的回复。

Top-P

  • 参数:top_p

  • 可选,float,0.0 至 1.0

  • 默认值:1.0

top_p 参数控制模型在生成文本时的候选词选择范围。具体来说,模型会生成一组候选 token,然后从累积概率达到或超过 p 的 token 中随机选择一个作为输出。通过这种方式,top_p 能够在保证生成内容的多样性的同时,考虑到概率分布的合理性。

由于 temperature 与 top_p 均可以控制生成文本的多样性,因此建议您只设置其中一个值。

Top-K

  • 参数:top_k

  • 可选,int,>= 0

  • 默认值:0

top_k 会限制模型在每一步对 token 的选择,使其从较小的集合中进行选择。值为 1 表示模型将始终选择最有可能的下一个 token,从而得到可预测的结果。

频率惩罚

  • 参数:frequency_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

frequency_penalty 可根据词条在输入中出现的频率来控制其重复使用。它会尝试减少那些在输入中出现频率较高的词条的使用频率,这与它们出现的频率成正比。词条惩罚会随着出现次数的增加而增加。负值将鼓励词条重复使用。

存在惩罚

  • 参数:presence_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

presence_penalty 调整模型重复输入中已使用的特定标记的频率。值越高,重复的可能性就越小,负值则相反。标记惩罚不会随着出现次数而变化。负值会鼓励标记重用。

重复惩罚

  • 参数:repetition_penalty

  • 可选,float,0.0 至 2.0

  • 默认值:1.0

repetition_penalty 有助于减少输入中标记的重复。较高的值会降低模型重复标记的可能性,但过高的值会使输出不够连贯(通常会出现缺少小词的连续句子)。标记惩罚会根据原始标记的概率进行调整。

Min-P

  • 参数:min_p

  • 可选,float,0.0 至 1.0

  • 默认值:0.0

min_p 表示某个 token 被考虑的最小概率,该概率是相对于最可能的 token 的概率而言的。如果 min_p 设置为 0.1,则意味着它只允许概率至少为最佳选项十分之一的 token 被考虑。

Top-A

  • 参数:top_a

  • 可选,float,0.0 到 1.0

  • 默认值:0.0

top_a 仅考虑概率“足够高”的 top tokens,该概率基于最可能的 token 概率。可以将其视为一个动态的 Top-P。较低的 Top-A 值会根据概率最高的 token 集中选择,但范围会更窄。较高的 Top-A 值不一定会影响输出的创造性,但会根据最大概率优化过滤过程。

种子

  • 参数:seed

  • 可选,int

如果指定了 seed 参数,推理将确定性地进行采样,即使用相同种子和参数的重复请求应该返回相同的结果。某些模型无法保证确定性。

最大 tokens 数

  • 参数:max_tokens

  • 可选,int,>= 1

max_tokens 可设定模型在响应中可以生成的 token 数量的上限。模型不会生成超过此限制的 token。其最大值等于上下文长度减去 prompt 长度。

Logit Bias

  • 参数:logit_bias

  • 可选,object

logit_bias 是一个可选参数,用于修改指定 token 在模型生成输出中出现的可能性。

对数概率

  • 参数:logprobs

  • 可选,boolean

logprobs 设置是否返回输出 token 的对数概率。如果为 true,则返回每个输出 token 的对数概率。

最高对数概率

  • 参数:top_logprobs

  • 可选,int

top_logprobs 是一个介于 0 和 20 之间的整数,指定在每个 token 位置要返回的最可能 token 的数量,每个 token 都会带有相应的对数概率。如果使用此参数,则必须将 logprobs 设置为 true

响应格式

  • 参数:response_format

  • 可选,object

response_format 强制模型产出特定的输出格式。将其设置为 { "type": "json_object" } 可启用 JSON 模式,保证模型生成的消息为有效的 JSON。

注意:使用 JSON 模式时,应同时通过 system 或 user 提示词指示模型生成 JSON。

结构化输出

  • 参数:structured_outputs

  • 可选,boolean

指示模型是否能够使用 response_format 中的 json_schema 返回结构化输出。

停止

  • 参数:stop

  • 可选,array

如果模型遇到 stop 数组中指定的任意 token,则立即停止生成。

工具

  • 参数:tools

  • 可选,array

工具调用参数,遵循 OpenAI 的工具调用请求格式。对于非 OpenAI 提供者,会相应地进行转换。

工具选择

  • 参数:tool_choice

  • 可选,array

控制模型调用哪个工具。'none' 表示模型不会调用任何工具,而是生成一条消息。'auto' 表示模型可以在生成消息或调用一个或多个工具之间进行选择。'required' 表示模型必须调用一个或多个工具。通过 {"type": "function", "function": {"name": "my_function"}} 指定特定工具会强制模型调用该工具。

并行工具调用

  • 参数:parallel_tool_calls

  • 可选,boolean

  • 默认:true

是否在使用工具时启用并行函数调用。如果为 true,模型可以同时调用多个函数。如果为 false,函数将按顺序依次调用。

冗长程度

  • 参数:verbosity

  • 可选,enumlow medium high

  • 默认:medium

控制模型响应的冗长程度和长度。较低的值会生成更简洁的回答,而较高的值会生成更详细、更全面的回答。


以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

DeepSeek V3.2

文本生成

GLM 4.7

文本生成、深度思考

MiniMax M2.1

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

GLM 5

文本生成、深度思考、代码补全

GLM 4.6V

图片识别、深度思考

Doubao Seed 2.0 Code

代码补全、深度思考

DeepSeek V3.2 Speciale

文本生成、深度思考

Doubao Seed 1.8

多模态、深度思考

通义千问 Qwen Plus

文本生成

最新发布模型

Qwen3.5 397B A17B

文本生成、深度思考、多模态

Doubao Seed 2.0 Code

代码补全、深度思考

Doubao Seed 2.0 Lite

文本生成、深度思考、多模态

Doubao Seed 2.0 Mini

文本生成、深度思考、多模态

Qwen 3.5 Plus

文本生成、深度思考、多模态

Doubao Seed 2.0 Pro

文本生成、深度思考、多模态

GLM 5

文本生成、深度思考、代码补全

MiniMax M2.5

内容生成、 深度思考、代码补全

Qwen3 Max Thinking

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全