Qwen3 Embedding 8B API 接口、参数 & 代码示例

qwen/qwen3-embedding-8b

Qwen3 Embedding 模型系列是 Qwen 最新推出的向量化模型,专为文本嵌入与排序任务设计。该系列继承了基础模型卓越的多语言理解能力、长文本处理能力和推理性能,在文本检索、代码检索、文本分类、文本聚类及双语文本挖掘等多项文本嵌入与排序任务中均实现显著突破。

模型 ID
qwen/qwen3-embedding-8b
模型系列
Qwen
更新日期
模型能力
文本嵌入、文本向量化
上下文长度
32 K
模型价格(每 1000 tokens 输入)
¥ 0.0007
模型价格(每 1000 tokens 输出)
¥ 0

Qwen3 Embedding 8B 模型介绍:

Qwen3 嵌入模型系列是 Qwen 系列中最新的专有模型,专为文本嵌入与排序任务设计。基于 Qwen3 系列的 dense 基础模型,该系列提供了多种规模(0.6B、4B、8B)的文本嵌入与重排序模型,继承了其基础模型在多语言能力、长文本理解与推理能力方面的优异表现。Qwen3 嵌入系列在多项文本嵌入与排序任务上实现了显著进展,包括文本检索、代码检索、文本分类、文本聚类与双语文本挖掘。

卓越的通用性:该嵌入模型在广泛的下游应用评估中达到了最先进的性能。8B 规模的嵌入模型在 MTEB 多语种排行榜中位列 第一(截至 2025 年 6 月 5 日,得分 70.58),而重排序模型在多种文本检索场景中表现优异。

全面的灵活性:Qwen3 嵌入系列在嵌入与重排序模型上提供了从 0.6B 到 8B 的全套规模,以满足侧重效率或效果的不同用例。开发者可以无缝组合这两类模块。此外,嵌入模型允许在所有维度上灵活定义向量,嵌入与重排序模型均支持用户自定义指令,以提升在特定任务、语言或场景下的表现。

多语言能力:借助 Qwen3 模型的多语言能力,Qwen3 嵌入系列支持 100 多种语言。这也包括多种编程语言,并为多语言、跨语言与代码检索提供了强大的能力。

Qwen3-Embedding-8B 主要特性:

  • 模型类型:文本嵌入
  • 支持语言:100+ 种语言
  • 参数量:8B
  • 上下文长度:32k
  • 嵌入向量维度:最高 4096,支持用户自定义输出维度(32 至 4096)

API 接口地址:

https://wcode.net/api/gpt/v1/embeddings

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/embeddings' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "qwen/qwen3-embedding-8b",
    "input": ["苹果", "西瓜", "橙子"]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "qwen/qwen3-embedding-8b",
  "input": ["苹果", "西瓜", "橙子"]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/embeddings")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/embeddings'));
request.body = json.encode({
  "model": "qwen/qwen3-embedding-8b",
  "input": ["苹果", "西瓜", "橙子"]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/embeddings")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"qwen/qwen3-embedding-8b\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/embeddings";

  let payload = json!({
    "model": "qwen/qwen3-embedding-8b",
    "input": ["苹果", "西瓜", "橙子"]
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/embeddings");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"qwen/qwen3-embedding-8b\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/embeddings"

  payload := strings.NewReader("{\"model\":\"qwen/qwen3-embedding-8b\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/embeddings");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"qwen/qwen3-embedding-8b\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/embeddings");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"qwen/qwen3-embedding-8b\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "qwen/qwen3-embedding-8b",
  "input": ["苹果", "西瓜", "橙子"]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/embeddings',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"qwen/qwen3-embedding-8b\",\"input\":[\"苹果\",\"西瓜\",\"橙子\"]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/embeddings")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "qwen/qwen3-embedding-8b",
  "input": ["苹果", "西瓜", "橙子"]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/embeddings', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/embeddings",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'qwen/qwen3-embedding-8b',
    'input' => ['苹果', '西瓜', '橙子']
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/embeddings"

payload = {
  "model": "qwen/qwen3-embedding-8b",
  "input": ["苹果", "西瓜", "橙子"]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="qwen/qwen3-embedding-8b",
  input=["苹果", "西瓜", "橙子"]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "id": "chatcmpl-t1770400451s602re3370c9df37bacad4adc5e75",
    "object": "list",
    "data": [
        {
            "object": "embedding",
            "embedding": [
                -0.0022789943031966686,
                0.005342807620763779,
                0.0008489630999974906,
                0.01128932274878025,
                0.017748989164829254,
                ...
            ],
            "index": 0
        },
        {
            "object": "embedding",
            "embedding": [
                0.0004407314117997885,
                0.004681382328271866,
                0.0063998643308877945,
                -0.013155276887118816,
                0.017184821888804436,
                ...
            ],
            "index": 1
        },
        {
            "object": "embedding",
            "embedding": [
                0.014811988919973373,
                -0.009736964479088783,
                0.01251052413135767,
                -0.011861393228173256,
                0.016051238402724266,
                ...
            ],
            "index": 2
        }
    ],
    "model": "Qwen/Qwen3-Embedding-8B",
    "usage": {
        "prompt_tokens": 7,
        "total_tokens": 7
    }
}

以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

DeepSeek V3.2

文本生成

GLM 4.7

文本生成、深度思考

MiniMax M2.1

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

GLM 5

文本生成、深度思考、代码补全

GLM 4.6V

图片识别、深度思考

DeepSeek V3.2 Speciale

文本生成、深度思考

Doubao Seed 1.8

多模态、深度思考

通义千问 Qwen Plus

文本生成

Kimi K2.5

文本生成、图片识别、深度思考、多模态

最新发布模型

Doubao Seed 2.0 Pro

文本生成、深度思考、多模态

Doubao Seed 2.0 Mini

文本生成、深度思考、多模态

Doubao Seed 2.0 Lite

文本生成、深度思考、多模态

Doubao Seed 2.0 Code

代码补全、深度思考

GLM 5

文本生成、深度思考、代码补全

MiniMax M2.5

内容生成、 深度思考、代码补全

Qwen3 Max Thinking

文本生成、深度思考

Qwen3 Coder Next

文本生成、深度思考、代码补全

Kimi K2.5

文本生成、图片识别、深度思考、多模态

MiniMax M2-her

文本生成、角色扮演