Qwen3 VL 235B A22B Thinking API

qwen/qwen3-vl-235b-a22b-thinking

Qwen3-VL-235B-A22B Thinking 是一款多模态模型,融合了强大的文本生成能力与跨图像、视频的视觉理解功能。该模型专门针对 STEM 领域和数学的多模态推理进行优化,重点强化了鲁棒感知(识别多样化的真实世界及合成类别)、空间理解(2D/3D定位)以及长篇幅视觉内容解析能力,在公开多模态基准测试的感知与推理任务中均展现出卓越表现。除分析功能外,Qwen3-VL 还支持智能体交互与工具调用:可遵循跨多图像、多轮对话的复杂指令;将文本与视频时间轴对齐以实现精准的时间定位查询;操作图形界面元素完成自动化任务。该系列模型还能驱动可视化编程工作流,将草图或原型转化为代码并辅助UI调试,同时保持与旗舰版Qwen3语言模型相媲美的纯文本处理性能。这些特性使 Qwen3-VL 适用于文档AI、多语言OCR、软件/UI辅助、空间/具身任务以及视觉语言智能体研究等多元化生产场景。

模型 ID
qwen/qwen3-vl-235b-a22b-thinking
更新日期
模型能力
图片识别
上下文长度
128 K
模型价格(每 1000 tokens 输入)
¥ 0.004
模型价格(每 1000 tokens 输出)
¥ 0.036
模型系列
Qwen

API 接口地址:

https://wcode.net/api/gpt/v1/chat/completions

此 API 接口兼容 OpenAI 的接口规范,也就是可以直接使用 OpenAI 的 SDK 来调用各个模型。仅需替换以下两项配置即可:

  1. base_url 替换为 https://wcode.net/api/gpt/v1
  2. api_key 替换为从 https://wcode.net/get-apikey 获取到的 API Key

具体可参考下方的各编程语言代码示例中的 openai sdk 调用示例。

请求方法:

POST

各编程语言代码示例:

# TODO: 以下代码中的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
curl --request POST 'https://wcode.net/api/gpt/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer API_KEY' \
--data '{
    "model": "qwen/qwen3-vl-235b-a22b-thinking",
    "messages": [
        {
            "role": "user",
            "content": "你好"
        }
    ]
}'
import Foundation

let headers = [
  "Authorization": "Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
]
let parameters = [
  "model": "qwen/qwen3-vl-235b-a22b-thinking",
  "messages": [
    [
      "role": "user",
      "content": "你好"
    ]
  ]
] as [String : Any]

let postData = JSONSerialization.data(withJSONObject: parameters, options: [])

let request = NSMutableURLRequest(url: NSURL(string: "https://wcode.net/api/gpt/v1/chat/completions")! as URL,
                                        cachePolicy: .useProtocolCachePolicy,
                                    timeoutInterval: 60.0)
request.httpMethod = "POST"
request.allHTTPHeaderFields = headers
request.httpBody = postData as Data

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
  if (error != nil) {
    print(error as Any)
  } else {
    let httpResponse = response as? HTTPURLResponse
    print(httpResponse)
  }
})

dataTask.resume()
var headers = {
  'Content-Type': 'application/json',
  'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
};
var request = http.Request('POST', Uri.parse('https://wcode.net/api/gpt/v1/chat/completions'));
request.body = json.encode({
  "model": "qwen/qwen3-vl-235b-a22b-thinking",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});
request.headers.addAll(headers);

http.StreamedResponse response = await request.send();

if (response.statusCode == 200) {
  print(await response.stream.bytesToString());
}
else {
  print(response.reasonPhrase);
}
require 'uri'
require 'net/http'

url = URI("https://wcode.net/api/gpt/v1/chat/completions")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true

request = Net::HTTP::Post.new(url)
request["Authorization"] = 'Bearer API_KEY'     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
request["content-type"] = 'application/json'
request.body = "{\"model\":\"qwen/qwen3-vl-235b-a22b-thinking\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}"

response = http.request(request)
puts response.read_body
use serde_json::json;
use reqwest;

#[tokio::main]
pub async fn main() {
  let url = "https://wcode.net/api/gpt/v1/chat/completions";

  let payload = json!({
    "model": "qwen/qwen3-vl-235b-a22b-thinking",
    "messages": (
      json!({
        "role": "user",
        "content": "你好"
      })
    )
  });

  let mut headers = reqwest::header::HeaderMap::new();
  headers.insert("Authorization", "Bearer API_KEY".parse().unwrap());     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  headers.insert("content-type", "application/json".parse().unwrap());

  let client = reqwest::Client::new();
  let response = client.post(url)
    .headers(headers)
    .json(&payload)
    .send()
    .await;

  let results = response.unwrap()
    .json::<serde_json::Value>()
    .await
    .unwrap();

  dbg!(results);
}
CURL *hnd = curl_easy_init();

curl_easy_setopt(hnd, CURLOPT_CUSTOMREQUEST, "POST");
curl_easy_setopt(hnd, CURLOPT_URL, "https://wcode.net/api/gpt/v1/chat/completions");

struct curl_slist *headers = NULL;
headers = curl_slist_append(headers, "Authorization: Bearer API_KEY");    // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
headers = curl_slist_append(headers, "content-type: application/json");
curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, headers);

curl_easy_setopt(hnd, CURLOPT_POSTFIELDS, "{\"model\":\"qwen/qwen3-vl-235b-a22b-thinking\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

CURLcode ret = curl_easy_perform(hnd);
package main

import (
  "fmt"
  "strings"
  "net/http"
  "io"
)

func main() {
  url := "https://wcode.net/api/gpt/v1/chat/completions"

  payload := strings.NewReader("{\"model\":\"qwen/qwen3-vl-235b-a22b-thinking\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}")

  req, _ := http.NewRequest("POST", url, payload)

  req.Header.Add("Authorization", "Bearer API_KEY")     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  req.Header.Add("content-type", "application/json")

  res, _ := http.DefaultClient.Do(req)

  defer res.Body.Close()
  body, _ := io.ReadAll(res.Body)

  fmt.Println(res)
  fmt.Println(string(body))
}
using System.Net.Http.Headers;


var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post, "https://wcode.net/api/gpt/v1/chat/completions");

request.Headers.Add("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.Content = new StringContent("{\"model\":\"qwen/qwen3-vl-235b-a22b-thinking\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", null, "application/json");

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());
var client = new RestClient("https://wcode.net/api/gpt/v1/chat/completions");

var request = new RestRequest("", Method.Post);

request.AddHeader("Authorization", "Bearer API_KEY");     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey

request.AddHeader("content-type", "application/json");

request.AddParameter("application/json", "{\"model\":\"qwen/qwen3-vl-235b-a22b-thinking\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}", ParameterType.RequestBody);

var response = client.Execute(request);
const axios = require('axios');

let data = JSON.stringify({
  "model": "qwen/qwen3-vl-235b-a22b-thinking",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
});

let config = {
  method: 'post',
  maxBodyLength: Infinity,
  url: 'https://wcode.net/api/gpt/v1/chat/completions',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer API_KEY'     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  },
  data : data
};

axios.request(config).then((response) => {
  console.log(JSON.stringify(response.data));
}).catch((error) => {
  console.log(error);
});
OkHttpClient client = new OkHttpClient();

MediaType mediaType = MediaType.parse("application/json");

RequestBody body = RequestBody.create(mediaType, "{\"model\":\"qwen/qwen3-vl-235b-a22b-thinking\",\"messages\":[{\"role\":\"user\",\"content\":\"你好\"}]}");

Request request = new Request.Builder()
  .url("https://wcode.net/api/gpt/v1/chat/completions")
  .post(body)
  .addHeader("Authorization", "Bearer API_KEY")             // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  .addHeader("content-type", "application/json")
  .build();

Response response = client.newCall(request).execute();
$client = new \GuzzleHttp\Client();

$headers = [
  'Content-Type' => 'application/json',
  'Authorization' => 'Bearer API_KEY',     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
];

$body = '{
  "model": "qwen/qwen3-vl-235b-a22b-thinking",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}';

$request = new \GuzzleHttp\Psr7\Request('POST', 'https://wcode.net/api/gpt/v1/chat/completions', $headers, $body);

$response = $client->sendAsync($request)->wait();

echo $response->getBody();
$curl = curl_init();

curl_setopt_array($curl, [
  CURLOPT_URL => "https://wcode.net/api/gpt/v1/chat/completions",
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => "",
  CURLOPT_MAXREDIRS => 5,
  CURLOPT_TIMEOUT => 300,
  CURLOPT_CUSTOMREQUEST => "POST",
  CURLOPT_POSTFIELDS => json_encode([
    'model' => 'qwen/qwen3-vl-235b-a22b-thinking',
    'messages' => [
      [
        'role' => 'user',
        'content' => '你好'
      ]
    ]
  ]),
  CURLOPT_HTTPHEADER => [
    "Authorization: Bearer API_KEY",     // TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
    "content-type: application/json",
  ],
]);

$response = curl_exec($curl);
$error = curl_error($curl);

curl_close($curl);

if ($error) {
  echo "cURL Error #:" . $error;
} else {
  echo $response;
}
import requests
import json

url = "https://wcode.net/api/gpt/v1/chat/completions"

payload = {
  "model": "qwen/qwen3-vl-235b-a22b-thinking",
  "messages": [
    {
      "role": "user",
      "content": "你好"
    }
  ]
}

headers = {
  "Authorization": "Bearer API_KEY",     # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
  "content-type": "application/json"
}

response = requests.post(url, json=payload, headers=headers)

print(json.dumps(response.json(), indent=4, ensure_ascii=False))
from openai import OpenAI

client = OpenAI(
  base_url="https://wcode.net/api/gpt/v1",
  api_key="API_KEY"                             # TODO: 这里的 API_KEY 需要替换,获取 API Key 入口:https://wcode.net/get-apikey
)

completion = client.chat.completions.create(
  model="qwen/qwen3-vl-235b-a22b-thinking",
  messages=[
    {
      "role": "user",
      "content": "你好"
    }
  ]
)

print(completion.choices[0].message.content)

API 响应示例:

{
    "id": "chatcmpl-t1759078884s364rb2e8b87129d5f95f5622479a",
    "model": "qwen/qwen3-vl-235b-a22b-thinking",
    "object": "chat.completion",
    "created": 1759078885,
    "choices": [
        {
            "logprobs": null,
            "finish_reason": "stop",
            "native_finish_reason": "stop",
            "index": 0,
            "message": {
                "role": "assistant",
                "content": "你好呀!我是Qwen,也就是通义千问,是阿里巴巴集团旗下的通义实验室自主研发的超大规模语言模型。我的中文名叫通义千问,英文名叫Qwen。\n\n我能够回答问题、创作文字(比如写故事、写公文、写邮件、写剧本、逻辑推理、编程等),还能表达观点、玩游戏等。我支持多种语言,包括但不限于中文、英文、德语、法语、西班牙语等,可以满足不同场景下的需求。\n\n我是在大量互联网文本基础上训练的,所以能理解和生成各种主题的内容。无论是学习、工作还是日常交流,我都可以提供帮助。如果你有任何问题或者需要协助,随时可以问我哦!\n\n有什么问题或者需要帮助的吗?😊",
                "refusal": null,
                "reasoning": "好的,用户让我介绍一下自己。首先,我需要确定用户的需求是什么。可能他们刚接触这个平台,想了解我的功能和背景。作为通义千问,我应该先说明自己的身份,比如我是通义实验室研发的超大规模语言模型。\n\n接下来,要突出我的能力。用户可能想知道我能做什么,比如回答问题、创作文字、编程、表达观点等。需要列举一些具体的应用场景,比如写故事、写公文、写邮件、写剧本,或者逻辑推理、编程。这样用户能更清楚我的用途。\n\n然后,可能需要提到我的多语言支持,因为用户可能来自不同国家,或者需要处理多语言内容。不过用户的问题是用中文问的,可能主要关注中文能力,但还是要提一下多语言支持。\n\n另外,用户可能想知道我的训练数据和背景,但可能不需要太技术性的细节。可以简单说我是阿里云研发的,基于大量互联网文本训练,但避免深入技术细节,保持简洁。\n\n还要注意语气友好,用口语化的中文,避免太正式。比如用“你好呀”开头,显得亲切。可能需要检查有没有遗漏的重要功能,比如多模态能力,但用户问的是自我介绍,可能主要关注语言能力。\n\n需要确认是否要提到通义万相、通义听悟这些相关产品,但可能不需要,因为用户只问了我自己的介绍。重点放在Qwen本身。\n\n最后,结尾可以邀请用户提问,促进互动。比如“有什么问题或者需要帮助的吗?”这样比较自然。\n\n现在组织一下语言:先打招呼,说明身份,列举能力,多语言支持,研发背景,然后邀请用户提问。注意别太长,分点可能用自然语言连接,避免用列表。\n\n检查有没有错误,比如名字是否正确,功能是否准确。比如,确实支持100多种语言,但可能需要确认。不过用户可能不需要具体数字,说“多种语言”即可。\n\n可能用户是第一次使用,所以保持简洁明了,重点突出。避免技术术语,用例子说明能力,比如写故事、写邮件,这样更直观。\n"
            }
        }
    ],
    "system_fingerprint": "",
    "usage": {
        "prompt_tokens": 14,
        "completion_tokens": 599,
        "total_tokens": 613,
        "prompt_tokens_details": {
            "cached_tokens": 0,
            "audio_tokens": 0
        },
        "completion_tokens_details": {
            "reasoning_tokens": 442
        }
    }
}

可选参数:

重要提示:由于模型架构不同,部分参数可能仅适用于特定的模型。

温度

  • 参数:temperature

  • 可选,浮点数,0.0 到 2.0

  • 默认:1.0

此设置影响模型回复的多样性。较低的值会使回复更可预测、更常见;较高的值会鼓励更具多样性且较不常见的回复。当设置为 0 时,模型对相同输入将尽可能的给出相同的回复。

Top-P

  • 参数:top_p

  • 可选,float,0.0 至 1.0

  • 默认值:1.0

top_p 参数控制模型在生成文本时的候选词选择范围。具体来说,模型会生成一组候选 token,然后从累积概率达到或超过 p 的 token 中随机选择一个作为输出。通过这种方式,top_p 能够在保证生成内容的多样性的同时,考虑到概率分布的合理性。

由于 temperature 与 top_p 均可以控制生成文本的多样性,因此建议您只设置其中一个值。

Top-K

  • 参数:top_k

  • 可选,int,>= 0

  • 默认值:0

top_k 会限制模型在每一步对 token 的选择,使其从较小的集合中进行选择。值为 1 表示模型将始终选择最有可能的下一个 token,从而得到可预测的结果。

频率惩罚

  • 参数:frequency_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

frequency_penalty 可根据词条在输入中出现的频率来控制其重复使用。它会尝试减少那些在输入中出现频率较高的词条的使用频率,这与它们出现的频率成正比。词条惩罚会随着出现次数的增加而增加。负值将鼓励词条重复使用。

存在惩罚

  • 参数:presence_penalty

  • 可选,float,-2.0 至 2.0

  • 默认值:0.0

presence_penalty 调整模型重复输入中已使用的特定标记的频率。值越高,重复的可能性就越小,负值则相反。标记惩罚不会随着出现次数而变化。负值会鼓励标记重用。

重复惩罚

  • 参数:repetition_penalty

  • 可选,float,0.0 至 2.0

  • 默认值:1.0

repetition_penalty 有助于减少输入中标记的重复。较高的值会降低模型重复标记的可能性,但过高的值会使输出不够连贯(通常会出现缺少小词的连续句子)。标记惩罚会根据原始标记的概率进行调整。

Min-P

  • 参数:min_p

  • 可选,float,0.0 至 1.0

  • 默认值:0.0

min_p 表示某个 token 被考虑的最小概率,该概率是相对于最可能的 token 的概率而言的。如果 min_p 设置为 0.1,则意味着它只允许概率至少为最佳选项十分之一的 token 被考虑。

Top-A

  • 参数:top_a

  • 可选,float,0.0 到 1.0

  • 默认值:0.0

top_a 仅考虑概率“足够高”的 top tokens,该概率基于最可能的 token 概率。可以将其视为一个动态的 Top-P。较低的 Top-A 值会根据概率最高的 token 集中选择,但范围会更窄。较高的 Top-A 值不一定会影响输出的创造性,但会根据最大概率优化过滤过程。

种子

  • 参数:seed

  • 可选,int

如果指定了 seed 参数,推理将确定性地进行采样,即使用相同种子和参数的重复请求应该返回相同的结果。某些模型无法保证确定性。

最大 tokens 数

  • 参数:max_tokens

  • 可选,int,>= 1

max_tokens 可设定模型在响应中可以生成的 token 数量的上限。模型不会生成超过此限制的 token。其最大值等于上下文长度减去 prompt 长度。

Logit Bias

  • 参数:logit_bias

  • 可选,object

logit_bias 是一个可选参数,用于修改指定 token 在模型生成输出中出现的可能性。

对数概率

  • 参数:logprobs

  • 可选,boolean

logprobs 设置是否返回输出 token 的对数概率。如果为 true,则返回每个输出 token 的对数概率。

最高对数概率

  • 参数:top_logprobs

  • 可选,int

top_logprobs 是一个介于 0 和 20 之间的整数,指定在每个 token 位置要返回的最可能 token 的数量,每个 token 都会带有相应的对数概率。如果使用此参数,则必须将 logprobs 设置为 true

响应格式

  • 参数:response_format

  • 可选,object

response_format 强制模型产出特定的输出格式。将其设置为 { "type": "json_object" } 可启用 JSON 模式,保证模型生成的消息为有效的 JSON。

注意:使用 JSON 模式时,应同时通过 system 或 user 提示词指示模型生成 JSON。

结构化输出

  • 参数:structured_outputs

  • 可选,boolean

指示模型是否能够使用 response_format 中的 json_schema 返回结构化输出。

停止

  • 参数:stop

  • 可选,array

如果模型遇到 stop 数组中指定的任意 token,则立即停止生成。

工具

  • 参数:tools

  • 可选,array

工具调用参数,遵循 OpenAI 的工具调用请求格式。对于非 OpenAI 提供者,会相应地进行转换。

工具选择

  • 参数:tool_choice

  • 可选,array

控制模型调用哪个工具。'none' 表示模型不会调用任何工具,而是生成一条消息。'auto' 表示模型可以在生成消息或调用一个或多个工具之间进行选择。'required' 表示模型必须调用一个或多个工具。通过 {"type": "function", "function": {"name": "my_function"}} 指定特定工具会强制模型调用该工具。

并行工具调用

  • 参数:parallel_tool_calls

  • 可选,boolean

  • 默认:true

是否在使用工具时启用并行函数调用。如果为 true,模型可以同时调用多个函数。如果为 false,函数将按顺序依次调用。

冗长程度

  • 参数:verbosity

  • 可选,enumlow medium high

  • 默认:medium

控制模型响应的冗长程度和长度。较低的值会生成更简洁的回答,而较高的值会生成更详细、更全面的回答。


以上文档为标准版 API 接口文档,可直接用于项目开发和系统调用。如果标准版 API 接口无法满足您的需求,需要定制开发 API 接口,请联系我们的 IT 技术支持工程师:

(沟通需求✅ → 确认技术方案✅ → 沟通费用与工期✅ → 开发&测试✅ → 验收交付✅ → 维护升级✅)

最受关注模型

Qwen3 VL 30B A3B Instruct

图片识别

GLM 4.6

文本生成、深度思考

Tongyi DeepResearch 30B A3B

文本生成、深度研究

Qwen3 Next 80B A3B Instruct

文本生成

Qwen3 VL 235B A22B Instruct

图片识别

DeepSeek V3.2 Exp

文本生成

DeepSeek V3.1 Terminus

文本生成

Qwen3 Next 80B A3B Thinking

文本生成、深度思考

Qwen3 VL 30B A3B Thinking

图片识别、深度思考

GLM 4.5

文本生成

最新发布模型

Qwen3 VL 8B Instruct

图片识别

Baidu ERNIE 4.5 21B A3B Thinking

文本生成、深度思考

Qwen3 VL 30B A3B Thinking

图片识别、深度思考

Qwen3 VL 30B A3B Instruct

图片识别

GLM 4.6

文本生成、深度思考

DeepSeek V3.2 Exp

文本生成

Qwen3 VL 235B A22B Instruct

图片识别

Qwen3 VL 235B A22B Thinking

图片识别

DeepSeek V3.1 Terminus

文本生成

Tongyi DeepResearch 30B A3B

文本生成、深度研究